已知f(x)是定義在R上的函數(shù),并滿足f(x)f(x+2)=-2,當(dāng)1<x<2時,f(x)=x,則f(5.5)=


  1. A.
    1.5
  2. B.
    -1.5
  3. C.
    5.5
  4. D.
    -5.5
A
分析:由條件f(x)f(x+2)=-2推導(dǎo)出f(x)的周期,再根據(jù)周期把自變量轉(zhuǎn)化到1<x<2范圍上,代入f(x)=x即可求值
解答:∵f(x)f(x+2)=-2
∴f(x+2)f(x+4)=-2
∴f(x)=f(x+4)
∴函數(shù)f(x)的周期為T=4
∴f(5.5)=f(1.5)
又∵1.5∈(1,2),且當(dāng)1<x<2時,f(x)=x
∴f(5.5)=f(1.5)=1.5
故選A
點評:本題考查函數(shù)的周期性,要求能夠熟練應(yīng)用已知條件推導(dǎo)周期.屬簡單題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案