9.過點(diǎn)(1,2),且與直線x+2y+2=0垂直的直線方程為( 。
A.2x-y=0B.x-2y+3=0C.2x+y-4=0D.x+2y-5=0

分析 與直線x+2y+2=0垂直的直線方程的斜率k=2,由此能求出過點(diǎn)P(1,2)與直線x+2y+2=0垂直的直線方程.

解答 解:∵與直線x+2y+2=0垂直的直線方程的斜率k=2,
∴過點(diǎn)P(1,2)與直線x+2y+2=0垂直的直線方程為:y-2=2(x-1),
整理,得2x-y=0.
故選:A

點(diǎn)評(píng) 本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線與直線垂直的性質(zhì)的合理運(yùn)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,圓C的方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)把直線l化為直角坐標(biāo)方程和圓C的方程化為普通方程;
(2)求圓C上的點(diǎn)到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從區(qū)間[0,1]隨機(jī)抽取2n個(gè)數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2),…,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對(duì)共有m個(gè),則用隨機(jī)模擬的方法得到的圓周率π的近似值為$\frac{4m}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$,(t為參數(shù))與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))相交于不同的兩點(diǎn)A,B.以O(shè)為極點(diǎn),Ox正半軸為極軸,兩坐標(biāo)系取相同的單位長度,建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若α=$\frac{π}{3}$,求線段|AB|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若規(guī)定:
①{m}表示大于m的最小整數(shù),例如{3}=4,{-2.4}=-2
②[m]表示不大于m的最大整數(shù),例如:[5]=5,[-3.6]=-4,則使等式2{x}-[x]=4成立的整數(shù)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a+b=(lg2)3+(lg5)3+3lg2•lg5,則3ab+a3+b3=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.直角坐標(biāo)系xOy的原點(diǎn)和極坐標(biāo)系Ox的極點(diǎn)重合,x軸正半軸與極軸重合,單位長度相同,在直角坐標(biāo)系下,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosφ}\\{y=2sinφ}\end{array}\right.$,(φ為參數(shù)).
(1)在極坐標(biāo)系下,曲線C與射線θ=$\frac{π}{4}$和射線θ=-$\frac{π}{4}$分別交于A,B兩點(diǎn),求△AOB的面積;
(2)在直角坐標(biāo)系下,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=6\sqrt{2}-2t}\\{y=t-2}\end{array}\right.$(t為參數(shù)),求曲線C與直線l的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-3<x<1},B={x|x2-2x≤0},則A∩B=( 。
A.{x|0<x<1}B.{x|0≤x<1}C.{x|-1<x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=ax2-lnx,設(shè)曲線y=f(x)在x=t(0<t<2)處的切線為l.
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=-$\frac{1}{8}$時(shí),證明:當(dāng)x∈(0,2)時(shí),曲線y=f(x)與l有且僅有一個(gè)公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案