在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)已知cn=an+bn求cn的前n項(xiàng)之和Tn
分析:(Ⅰ)先根據(jù)條件求出公差和公比,即可求出通項(xiàng);
(Ⅱ)由an=n,bn=2n-1,cn=an+bn=n+2n-1,知{cn}前n項(xiàng)之和Tn=(1+2+3+…+n)+(1+2+4+…+2n-1),由此能求出結(jié)果.
解答:解:(Ⅰ)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
∵a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
∴S10=10+
10×9
2
d=55;b4=q3=8;
解得:d=1,q=2.
所以:an=n,bn=2n-1
(Ⅱ)∵an=n,bn=2n-1,∴cn=an+bn=n+2n-1,
∴{cn}前n項(xiàng)之和Tn=(1+2+3+…+n)+(1+2+4+…+2n-1
=
n(n+1)
2
+
1-2n
1-2

=
n(n+1)
2
+2n-1
點(diǎn)評(píng):本題主要考察等差數(shù)列等比數(shù)列的性質(zhì)及應(yīng)用,考察運(yùn)算能力,化歸與轉(zhuǎn)化思想.是對(duì)基礎(chǔ)知識(shí)的綜合考察,屬于中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(1)求an和bn;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)現(xiàn)分別從{an}和{bn}的前3項(xiàng)中各隨機(jī)抽取一項(xiàng),寫出相應(yīng)的基本事件,并求這兩項(xiàng)的值相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•煙臺(tái)三模)在等差數(shù)列{an}和等比數(shù)列{bn}的首項(xiàng)均為1,且公差d>0,公比q>1,則集合{n|an=bn}(n∈N+)中的元素最多有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數(shù)列,a2,b2,a3+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=abn,求數(shù)列{cn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(1)求an和bn;
(2)現(xiàn)分別從{an}和{bn}的前3項(xiàng)中各隨機(jī)抽取一項(xiàng),求這兩項(xiàng)的值相等的概率;
(3)設(shè){anbn}的前n和為Tn,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案