若實(shí)數(shù)x,y滿(mǎn)足
x2+y2≤1
y≥x
y≥-x
,則x-2y的最小值是
 
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.
解答: 解:設(shè)z=x-2y得y=
1
2
x-
z
2
,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線(xiàn)y=
1
2
x-
z
2
,
由圖象可知當(dāng)直線(xiàn)y=
1
2
x-
z
2
和圓相切時(shí),直線(xiàn)y=
1
2
x-
z
2
的截距最大,此時(shí)z最小,
則圓心O到直線(xiàn)x-2y-z=0的距離d=
|z|
12+22
=
|z|
5
=1
,
解得z=±
5

即目標(biāo)函數(shù)z=x-2y的最小值是-
5

故答案為:-
5
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問(wèn)題的關(guān)鍵,結(jié)合直線(xiàn)和圓的位置關(guān)系,利用數(shù)形結(jié)合是解決問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M的對(duì)稱(chēng)軸為坐標(biāo)軸,且圓x2+y2+2
2
y=0的圓心為橢圓M的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)在橢圓M上.
(1)求橢圓M的方程;
(2)已知直線(xiàn)l的斜率為
2
,若直線(xiàn)l與橢圓M交于B、C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為q,且滿(mǎn)足an+1<an,a1+a2+a3=
13
9
,a1a2a3=
1
27

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{(2n-1)•an}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿(mǎn)足sinA+
3
cosA=2.
(1)求A的大小;
(2)現(xiàn)給出三個(gè)條件:①a=2; ②B=45°;③c=
3
b.
試從中選出兩個(gè)可以確定△ABC的條件,寫(xiě)出你的選擇并以此為依據(jù)求△ABC的面積(只需寫(xiě)出一個(gè)選定方案即可,選多種方案以第一種方案記分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長(zhǎng)為2
13
,一直角邊的方程是y=2x,則拋物線(xiàn)的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PC切⊙O于點(diǎn)C,割線(xiàn)PAB經(jīng)過(guò)圓心O,弦CD⊥AB于點(diǎn)E,已知⊙O的半徑為3,PA=2,則OE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)x=
π
4
是函數(shù)f(x)=asinx-bcosx(ab≠0)圖象的一條對(duì)稱(chēng)軸,則直線(xiàn)ax+by+c=0的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若9S5+5S9=90,則S7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的兩個(gè)方程a1-x=x,a1+x=-x的解分別為m,n(其中a>1的常數(shù)),則m+n的值(  )
A、大于0
B、小于0
C、等于0
D、以上值都不對(duì),與a的值有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案