已知數(shù)列{}中,,前n項(xiàng)和
(I)求a2,a3以及{}的通項(xiàng)公式;
(II)設(shè),求數(shù)列{}的前n項(xiàng)和Tn

(I){}的通項(xiàng)公式為.(II).

解析試題分析:(I)通過(guò)研究當(dāng)時(shí),   (1),  (2)
(1)-(2)可得

得到,驗(yàn)證,適合上式,得出結(jié)論.
(II)注意到,所以利用“裂項(xiàng)相消法”求得.
試題解析:(I)由可得,
,
當(dāng)時(shí),   (1),  (2)
(1)-(2)可得

故有,
,所以{}的通項(xiàng)公式為
(II),
.
考點(diǎn):數(shù)列的通項(xiàng)公式,數(shù)列的求和,“裂項(xiàng)相消法”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列的首項(xiàng),其前項(xiàng)和,則       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)數(shù)列{an}中,a1=1,且log3an,log3an+1是方程x2(2n1)x+bn=0的兩個(gè)實(shí)根.
(1)求a2,b1;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若,項(xiàng)和, ,當(dāng)時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),等比數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)為,且前n項(xiàng)和滿足
(1)求數(shù)列的通項(xiàng)公式:
(2)若數(shù)列前n項(xiàng)和為,問(wèn)使的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意都有,其中為數(shù)列的前項(xiàng)和.
(1)求;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
求數(shù)列前n項(xiàng)的和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

等差數(shù)列中,,若在每相鄰兩項(xiàng)之間各插入一個(gè)數(shù),使之成為等差數(shù)列,
那么新的等差數(shù)列的公差是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果=1,2,3,…)為完全平方數(shù),則稱數(shù)
具有“性質(zhì)”.不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同時(shí)滿足下面兩個(gè)條件:①的一個(gè)排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.下面三個(gè)數(shù)列:①數(shù)列的前項(xiàng)和;②數(shù)列1,2,3,4,5;③1,2,3,…,11.具有“性質(zhì)”的為        ;具有“變換性質(zhì)”的為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

等差數(shù)列的值為(   )

A.66 B.99 C.144 D.297

查看答案和解析>>

同步練習(xí)冊(cè)答案