1.已知f(x)=x2+ax+$\frac{9}{a-1}$,(a為常數(shù)且a≠1),
(1)若不等式f(x)<0的解集為{x|-1<x<3},求a的值;
(2)若a>1,求f(1)的最小值.

分析 (1)將x=-1,3代入f(x),得到關(guān)于a的方程組,解出即可;(2)根據(jù)基本不等式的性質(zhì)求出函數(shù)的最小值即可.

解答 解:(1)由題意得:-1,3是方程x2+ax+$\frac{9}{a-1}$=0的根,
故$\left\{\begin{array}{l}{1-a+\frac{9}{a-1}=0}\\{9+3a+\frac{9}{a-1}=0}\end{array}\right.$,解得:a=-2;
(2)a>1時,f(1)=a+1+$\frac{9}{a-1}$=(a-1)+$\frac{9}{a-1}$+2≥2$\sqrt{(a-1)•\frac{9}{a-1}}$+2=8,
當(dāng)且僅當(dāng)a-1=$\frac{9}{a-1}$時“=”成立.
即f(1)的最小值為8.

點評 本題考查了基本不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=x+1,x∈{-1,1,2}的值域是{0,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>b,ab≠0,下列不等式中恒成立的有( 。
①a2>b2②2a>2b③a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$④$\frac{1}{a}$<$\frac{1}$⑤($\frac{1}{3}$)a<($\frac{1}{3}$)b
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,則f(1+log23)的值為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了了解中學(xué)生的體能狀況,某校抽取了n名高一學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中第二小組頻數(shù)為7.
(1)求頻率分布直方圖中a的值及抽取的學(xué)生人數(shù)n;
(2)現(xiàn)從跳繩次數(shù)在[179.5,199.5]內(nèi)的學(xué)生中隨機選取2人,求至少有一人跳繩次數(shù)在[189.5,199.5]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$f(x)={(-{x^2}-2x+3)^{-\frac{1}{2}}}$的單調(diào)遞增區(qū)間是[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinπ{x}^{2},-1≤x≤0}\\{{e}^{x-1},x>0}\end{array}\right.$,則滿足f(x0)=1的實數(shù)x0的值為1或$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有2個紅球、3個白球的甲箱和裝有2個紅球、2個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(Ⅰ)求顧客抽獎1次能獲獎的概率;
(Ⅱ)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.
(Ⅲ)若只從甲箱中抽取3個球,記抽到的三個球中紅球的數(shù)目是隨機變量Y,求Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)化簡:$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
(2)若$α+β=\frac{3π}{4}$,求(1-tanα)(1-tanβ)的值.

查看答案和解析>>

同步練習(xí)冊答案