考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:計(jì)算題,分類(lèi)討論,導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)寫(xiě)出a=b=1時(shí)的函數(shù)f(x),求導(dǎo),求出切線(xiàn)的斜率和切點(diǎn),求得切線(xiàn)方程;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),討論當(dāng)a=0時(shí),①若b≤0,②若b>0,當(dāng)a<0時(shí),分別求出單調(diào)增區(qū)間和減區(qū)間;
(Ⅲ)由題意知函數(shù)f(x)在x=2處取得最大值.由( I I)知,
是f(x)的唯一的極大值點(diǎn),將ln(-a)與-2b作差,令g(x)=lnx+1-4x(x>0),運(yùn)用導(dǎo)數(shù),判斷單調(diào)性,即可比較.
解答:
解:(Ⅰ) a=b=1時(shí),
f(x)=x2-x+lnx,
f′(x)=x-1+,
∴
f(1)=-,k=f'(1)=1,
故f(x)點(diǎn)(1,f(1))處的切線(xiàn)方程是2x-2y-3=0.
(Ⅱ)由
f(x)=x2-bx+lnx ,x∈(0 , +∞),
得
f′(x)=.
(1)當(dāng)a=0時(shí),
f′(x)=.
①若b≤0,
由x>0知f'(x)>0恒成立,即函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞).
②若b>0,
當(dāng)
0<x<時(shí),f'(x)>0;當(dāng)
x>時(shí),f'(x)<0.
即函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,
),單調(diào)遞減區(qū)間是(
,+∞).
(2)當(dāng)a<0時(shí),f'(x)=0,得ax
2-bx+1=0,
由△=b
2-4a>0得
x1=,x2=.
顯然,x
1<0,x
2>0,
當(dāng)0<x<x
2時(shí),f'(x)>0,函數(shù)f(x)的單調(diào)遞增,
當(dāng)x>x
2時(shí),f'(x)<0,函數(shù)f(x)的單調(diào)遞減,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,
),單調(diào)遞減區(qū)間是(
,+∞).
綜上所述:當(dāng)a=0,b≤0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞);
當(dāng)a=0,b>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,
),單調(diào)遞減區(qū)間是(
,+∞);
當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,
),
單調(diào)遞減區(qū)間是(
,+∞).
(Ⅲ)由題意知函數(shù)f(x)在x=2處取得最大值.
由( I I)知,
是f(x)的唯一的極大值點(diǎn),
故
=2,整理得-2b=-1-4a.
于是ln(-a)-(-2b)=ln(-a)-(-1-4a)=ln(-a)+1+4a
令g(x)=lnx+1-4x(x>0),則
g′(x)=-4.
令g'(x)=0,得
x=,當(dāng)
x∈(0 , )時(shí),g'(x)>0,g(x)單調(diào)遞增;
當(dāng)
x∈( , +∞)時(shí),g'(x)<0,g(x)單調(diào)遞減.
因此對(duì)任意x>0,g(x)≤
g()=ln<0,又-a>0,
故g(-a)<0,即ln(-a)+1+4a<0,即ln(-a)<-1-4a=-2b,
∴l(xiāng)n(-a)<-2b.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線(xiàn)方程,求單調(diào)區(qū)間和極值、最值,考查分類(lèi)討論的思想方法,考查運(yùn)算能力,屬于中檔題.