某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示,椐統(tǒng)計,隨機變量的概率分布如下:

0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率.
(1);(2).

試題分析:(1)由概率分布的性質(zhì)可求得a,再由求期望的公式即可求得數(shù)學(xué)期望.
(2) “兩個月內(nèi)共被投訴2次”這個事件包含以下兩個事件: “兩個月內(nèi)有一個月被投訴2次,另外一個月被投訴0次”; “兩個月內(nèi)每月均被投訴1次”,這兩個事件顯然互斥,那么求出這兩個事件的概率相加即得.
試題解析:(1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解答a=0.2         2分
的概率分布為

0
1
2
3
P
0.1
0.3
0.4
0.2
            4分
                6分
(2)設(shè)事件A表示“兩個月內(nèi)共被投訴2次”,事件表示“兩個月內(nèi)有一個月被投訴2次,另外一個月被投訴0次”;事件表示“兩個月內(nèi)每月均被投訴1次”,這兩個事件互斥.
由題設(shè),一月份與二月份被消費者投訴的次數(shù)互不影響,即相互獨立,所以
                      8分
                       10分

故該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率為0.17          12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某選修課的考試按A級、B級依次進(jìn)行,只有當(dāng)A級成績合格時,才可繼續(xù)參加B級的考試.已知每級考試允許有一次補考機會,兩個級別的成績均合格方可獲得該選修課的合格證書.現(xiàn)某人參加這個選修課的考試,他A級考試成績合格的概率為,B級考試合格的概率為.假設(shè)各級考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得該選修課的合格證書的概率;
(2)在這個考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為,求的數(shù)學(xué)期望E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

湖南省在學(xué)業(yè)水平考查中設(shè)計了物理學(xué)科的實驗考查方案:考生從道備選試驗考查題中一次隨機抽取題,并按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中題便通過考查.已知道備選題中文科考生甲有題能正確完成,題不能完成;文科考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(Ⅰ)分別寫出文科考生甲正確完成題數(shù)和文科考生乙正確完成題數(shù)的概率分布列,并計算各自的數(shù)學(xué)期望;
(Ⅱ)試從兩位文科考生正確完成題數(shù)的數(shù)學(xué)期望及通過考查的概率分析比較這兩位考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋子中裝有6個紅球和4個白球,假設(shè)每一個球被摸到的可能性是相等的.
(Ⅰ)從袋子中摸出3個球,求摸出的球為2個紅球和1個白球的概率;
(Ⅱ)從袋子中摸出兩個球,其中白球的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某舞蹈小組有2名男生和3名女生.現(xiàn)從中任選2人參加表演,記為選取女生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某項游戲活動的獎勵分成一、二、三等獎且相應(yīng)獲獎概率是以a1為首項,公比為2的等比數(shù)列,相應(yīng)資金是以700元為首項,公差為-140元的等差數(shù)列,則參與該游戲獲得資金的期望為________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

多選題是標(biāo)準(zhǔn)化考試的一種題型,一般是從A、B、C、D四個選項中選出所有正確的答案.在一次考試中有5道多選題,某同學(xué)一道都不會,他隨機的猜測,則他答對題數(shù)的期望值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為普及高中生安全逃生知識與安全防護能力,某學(xué)校高一年級舉辦了高中生安全知識與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某射手射擊所得環(huán)數(shù)的分布列如下:

7
8
9
10
P
x
0.1
0.3
y
已知的期望,則y的值為        

查看答案和解析>>

同步練習(xí)冊答案