【題目】在直角坐標(biāo)系xOy中,圓C:x2+y2+4x﹣2y+m=0與直線x﹣ y+ ﹣2=0相切.
(1)求圓C的方程;
(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且|MN|=2 ,求直線MN的方程.

【答案】
(1)解:圓C:x2+y2+4x﹣2y+m=0,可化為(x+2)2+(y﹣1)2=5﹣m,

∵圓C:x2+y2+4x﹣2y+m=0與直線x﹣ y+ ﹣2=0相切,

∴圓心到直線的距離d= =2=r,

∴圓C的方程為(x+2)2+(y﹣1)2=4;


(2)解:若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,則設(shè)方程為2x﹣y+c=0,

∵|MN|=2 ,

∴圓心到直線的距離d= =1,

=1,

∴c=5± ,

∴直線MN的方程為2x﹣y+5± =0.


【解析】(1)利用圓心到直線的距離d=r,求出半徑,即可求圓C的方程;(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,則設(shè)方程為2x﹣y+c=0,利用|MN|=2 ,可得圓心到直線的距離d= =1,即可求直線MN的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟(jì)作物(下簡(jiǎn)稱 作物)的生長(zhǎng)狀況,用簡(jiǎn)單隨機(jī)抽樣方法從該市調(diào)查了 500 處 作物種植點(diǎn),其生長(zhǎng)狀況如表:

其中生長(zhǎng)指數(shù)的含義是:2 代表“生長(zhǎng)良好”,1 代表“生長(zhǎng)基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.

(1)估計(jì)該市空氣質(zhì)量差的作物種植點(diǎn)中,不絕收的種植點(diǎn)所占的比例;

(2)能否有 99%的把握認(rèn)為“該市作物的種植點(diǎn)是否絕收與所在地域有關(guān)”?

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來(lái)估計(jì)該市作物的種植點(diǎn)中,絕收種植點(diǎn)的比例?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)若函數(shù)在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;

(3)求證:對(duì)任意,時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.

(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+a.
(1)若對(duì)任意的實(shí)數(shù)x都有f(1+x)=f(1﹣x)成立,求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求證 ;

(2)對(duì)任意,存在,使成立,求的取值范圍.(其中是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點(diǎn)P(1,1).
(1)求圓的方程;
(2)直線kx﹣y+3=0與該圓相交于A、B兩點(diǎn),若點(diǎn)M在圓上,且有向量 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案