(本小題滿分12分)
設函數(shù)
(1)當a=1時,求的單調(diào)區(qū)間。
(2)若上的最大值為,求a的值。

(1)為增區(qū)間, 
為減函數(shù)。
(2)a

解析試題分析:對函數(shù)求導得:,定義域為(0,2)
(1)當a=1時,令
為增區(qū)間;當為減函數(shù)。
(2)當有最大值,則必不為減函數(shù),且>0,為單調(diào)遞增區(qū)間。
最大值在右端點取到。.
考點:利用導數(shù)研究函數(shù)的單調(diào)性.
點評: 本題考查了利用導數(shù)求函數(shù)的單調(diào)區(qū)間的方法,已知函數(shù)的單調(diào)區(qū)間求參數(shù)范圍的方法,體現(xiàn)了導數(shù)在函數(shù)單調(diào)性中的重要應用;不等式恒成立問題的解法,轉(zhuǎn)化化歸的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),且.
(1)求的值;
(2)若令,求取值范圍;
(3)將表示成以)為自變量的函數(shù),并由此,求函數(shù)的最大值與最小值及與之對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),問是否存在實數(shù)使上取最大值3,最小值-29,若存在,求出的值;不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(ⅰ)若不等式對任意的恒成立,求實數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設時,求函數(shù)極大值和極小值;
(2)時討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當A=時,研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當時,在區(qū)間上為減函數(shù);
(3)當,函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點能作幾條直線與曲線相切?說明理由.

查看答案和解析>>

同步練習冊答案