精英家教網 > 高中數學 > 題目詳情
若f(x)是定義在(0,+∞)上的增函數,且對一切x,y>0,滿足f(
x
y
)=f(x)-f(y).
(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
3
)<2.
分析:(Ⅰ)在f(
x
y
)=f(x)-f(y)中,令x=y=1,能求出f(1).
(Ⅱ)由f(6)=1,知f(x+3)-f(
1
3
)<2=f(6)+f(6),故f(
x+3
2
)<f(6),再由f(x)是(0,+∞)上的增函數,能求出不等式f(x+3)-f(
1
3
)<2的解集.
解答:解:(Ⅰ)在f(
x
y
)=f(x)-f(y)中,
令x=y=1,得f(1)=f(1)-f(1),
∴f(1)=0.
(Ⅱ)∵f(6)=1,
∴f(x+3)-f(
1
3
)<2=f(6)+f(6),
∴f(3x+9)-f(6)<f(6),
即:f(
x+3
2
)<f(6),
∵f(x)是(0,+∞)上的增函數,
x+3
2
>0
x+3
2
<6
.解得-3<x<9.
故不等式f(x+3)-f(
1
3
)<2的解集為(-3,9).
點評:本題考查抽象函數的函數值的解法,考查不等式的解法.解題時要認真審題,注意抽象函數的性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設y=f(x)是定義在區(qū)間(a,b)(b>a)上的函數,若對?x1、x2∈(a,b),都有|f(x1)-f(x2)|≤|x1-x2|,則稱y=f(x)是區(qū)間(a,b)上的平緩函數.
(1)試證明對?k∈R3,f(x)=x2+kx+14都不是區(qū)間(-1,1)5上的平緩函數;
(2)若f(x)是定義在實數集R上的、周期為T=2的平緩函數,試證明對?x1、x2∈R,|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:

14、下列命題中:
①若函數f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數;
②若f(x)是定義域為R的奇函數,對于任意的x∈R都有f(x)+f(2-x)=0,則函數f(x)的圖象關于直線x=1對稱;
③已知x1,x2是函數f(x)定義域內的兩個值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數;
④若f (x)是定義在R上的奇函數,且f (x+2)也為奇函數,則f (x)是以4為周期的周期函數.
其中正確的命題序號是
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下列命題四個命題:
①若f(x)是定義在[-1,1]上的偶函數,且在[-1,0)上是增函數,θ∈(
π
4
,
π
2
)
,則f(sinθ)>f(cosθ);
②在△ABC中,A>B是cosA<cosB的充要條件;
③設函數f(x)=x2+2(-2≤x<0),其反函數為f-1(x),則f-1(3)=-1或1.
④在△ABC中,角A、B、C所對的邊分別為a、b、c,已知b2+c2=a2+bc,則A=
π
3

其中真命題的個數有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若f(x)是定義在[0,+∞)上的增函數,則不等式f(2x-1)<f(
13
)
的解集為
 

查看答案和解析>>

同步練習冊答案