15.某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個(gè)體積盡可能大的正方體新工件,并使新工件的一個(gè)面落在原工件的一個(gè)面內(nèi),則新工件的體積為( 。
A.$\frac{1}{8}$B.1C.2D.$\frac{4π}{3}$

分析 依題意知該工件為圓錐,底面半徑為$\sqrt{2}$,高為2,要使加工成的正方體新工件體積最大,則該正方體為圓錐的內(nèi)接正方體,即可得出結(jié)論.

解答 解:依題意知該工件為圓錐,底面半徑為$\sqrt{2}$,高為2,要使加工成的正方體新工件體積最大,則該正方體為圓錐的內(nèi)接正方體,設(shè)棱長(zhǎng)為2x,則有$\frac{\sqrt{2}x}{\sqrt{2}}=\frac{2-2x}{2}$,解得x=$\frac{1}{2}$,故2x=1,故新工件的體積為1.
故選B.

點(diǎn)評(píng) 本題考查三視圖與直觀圖的轉(zhuǎn)化,考查學(xué)生分析解決問題的能力,確定要使加工成的正方體新工件體積最大,則該正方體為圓錐的內(nèi)接正方體是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系xOy,若將曲線C向左平移1個(gè)單位長(zhǎng)度后就得到了曲線C1,再將曲線C1上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的$\sqrt{3}$倍,縱坐標(biāo)保持不變就得到了曲線C2,已知直線l:x-y-6=0.
(1)求曲線C1上的點(diǎn)到直線l的距離的最大值;
(2)過點(diǎn)M(-1,0)且與直線l平行的直線l1交C2于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,則ω的取值范圍是( 。
A.(0,2)B.[$\frac{3}{2}$,2)C.(0,$\frac{3}{2}$]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,已知$\frac{n{a}_{n+1}}{{a}_{n}}$$-\frac{(n+1){a}_{n}}{{a}_{n+1}}$=1,且a1=$\frac{π}{3}$,則tanSn的取值集合是( 。
A.{0,$\sqrt{3}$}B.{0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$}C.{0,$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$}D.{0,$\sqrt{3}$,-$\sqrt{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4對(duì)任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足$\frac{zi}{z-i}$=1,其中i為虛數(shù)單位,則復(fù)數(shù)z的模為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+cos\frac{πx}{2},x>1}\\{x^2,0<x≤1}\end{array}\right.$,函數(shù)g(x)=x+$\frac{1}{x}$+a(x>0),若存在唯一的x0,使得h(x)=min{f(x),g(x)}的值為h(x0),則實(shí)數(shù)a的取值范圍為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個(gè)幾何體挖去另一個(gè)幾何體所得的三視圖,若主視圖中長(zhǎng)方形的長(zhǎng)為2,寬為1,則該幾何體的體積為(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t為參數(shù),a∈R),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),設(shè)直線l與曲線C交于A、B兩點(diǎn),當(dāng)弦長(zhǎng)|AB|最短時(shí),直線l的普通方程為x+y-4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案