1.若函數(shù)f(x)=$\frac{{2}^{x+1}}{{2}^{x}+1}$,則f(-$\frac{1}{3}$)+f(-$\frac{1}{2}$)+f(-1)+f(0)+f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)=7.

分析 先求出f(x)+f(-x)=2,由此能求出f(-$\frac{1}{3}$)+f(-$\frac{1}{2}$)+f(-1)+f(0)+f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)的值.

解答 解:∵函數(shù)f(x)=$\frac{{2}^{x+1}}{{2}^{x}+1}$,
∴f(x)+f(-x)=$\frac{{2}^{x+1}}{{2}^{x}+1}$+$\frac{{2}^{-x+1}}{{2}^{-x}+1}$=$\frac{{2}^{x+1}}{{2}^{x}+1}$+$\frac{{2}^{\;}}{{2}^{x}+1}$=2,
∴f(-$\frac{1}{3}$)+f(-$\frac{1}{2}$)+f(-1)+f(0)+f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)
=2×3+$\frac{2}{{2}^{0}+1}$=7.
故答案為:7.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,以正四棱錐V-ABCD的底面中心O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系O-xyz,其中Ox∥BC,Oy∥AB,E為VC中點(diǎn),正四棱錐的底面邊長(zhǎng)為2a,高為h,且有cos<$\overrightarrow{BE}$,$\overrightarrow{DE}$>=-$\frac{15}{49}$.
(1)求$\frac{h}{a}$的值;
(2)求二面角B-VC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=4,S3=7,則S6的值為(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若三條直線ax+y+1=0,y=3x,x+y=4,交于一點(diǎn),則a的值為(  )
A.4B.-4C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.由8個(gè)面圍成的幾何體,每個(gè)面都是正三角形,并且有四個(gè)頂點(diǎn)A,B,C,D在同一平面上,ABCD是邊長(zhǎng)為15的正方形,則該幾何體的外接球的體積為( 。
A.1125$\sqrt{2}$πB.3375$\sqrt{2}$πC.450πD.900π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=3x+m•3-x為奇函數(shù).
(1)求函數(shù)g(x)=f(x)-$\frac{8}{3}$的零點(diǎn);
(2)若對(duì)任意t∈R的都有f(t2+a2-a)+f(1+2at)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)滿足:y=f(x-1)的圖象關(guān)于(1,0)點(diǎn)對(duì)稱,且當(dāng)x≥0時(shí)恒有$f(x-\frac{3}{2})=f(x+\frac{1}{2})$,當(dāng)x∈[0,2)時(shí),f(x)=ex-1,則f(2016)+f(-2017)=( 。
A.-1-eB.e-1C.1-eD.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=x3-6x2+9x,g(x)=$\frac{1}{3}$x3-$\frac{a+1}{2}$x2+ax-$\frac{1}{3}$(a>1)若對(duì)任意的x1∈[0,4],總存在x2∈[0,4],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為( 。
A.(1,$\frac{9}{4}$]B.[9,+∞)C.(1,$\frac{9}{4}$]∪[9,+∞)D.[$\frac{3}{2}$,$\frac{9}{4}$]∪[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知焦點(diǎn)在y軸上的雙曲線C的中心是原點(diǎn)O,離心率等于$\frac{{\sqrt{5}}}{2}$,以雙曲線C的一個(gè)焦點(diǎn)為圓心,2為半徑的圓與雙曲線C的漸近線相切,則雙曲線C的方程為(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{y^2}{4}-{x^2}=1$C.${y^2}-\frac{x^2}{4}=1$D.$\frac{y^2}{16}-\frac{x^2}{4}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案