設(shè)定義域為R的函數(shù)f(x)滿足f(x+1)=
1
2
+
f(x)-[f(x)]2
,且f(-1)=
1
2
,則f(2014)的值為( 。
A、-1
B、1
C、2014
D、
1
2
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過已知f(x+1)=
1
2
+
f(x)-[f(x)]2
,且f(-1)=
1
2
,分別求出f(0),f(1),f(2),f(3)…發(fā)現(xiàn)規(guī)律,猜測結(jié)果.
解答: 解:因為f(x+1)=
1
2
+
f(x)-[f(x)]2
,且f(-1)=
1
2
,
令x=-1得到,f(0)=
1
2
+
f(-1)-[f(-1)]2
=1;
令x=0得到f(1)=
1
2
+
f(0)-[f(0)]2
=
1
2

令x=1,得到f(2)=
1
2
+
f(1)-[f(1)]2
=1,

所以f(2014)=1.
故選B.
點評:本題考查了特殊函數(shù)的函數(shù)值的求法,本題的關(guān)鍵是發(fā)現(xiàn)規(guī)律.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的函數(shù),且滿足f(1)=5,對任意實數(shù)x都有f′(x)<3,則不等式f(x)<3x+2的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1=1,且an+1=2nan,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)(x-1)2+(y-2)2=5經(jīng)過橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F和上頂點B.
(1)求橢圓E的方程;
(2)過原點O的射線l在第一象限與橢圓E的交點為Q,與圓C的交點為P,M為OP的中點,求
OM
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={0,1,2},B={1,2,3},則∁(AUB)(A∩B)=(  )
A、{0,3}
B、{1,2}
C、∅
D、{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.PA=1,AD=2.
(1)證明:BD⊥平面PAC;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)AB、A′B′分別是圓O:x2+y2=4和橢圓C:
x2
4
+y2
=1的弦,且弦的端點在y軸的異側(cè),端點A與A′、B與B′的橫坐標分別相等,縱坐標分別同號.
(1)若弦A′B′所在直線斜率為-1,且弦A′B′的中點的橫坐標為
4
5
,求直線A′B′的方程;
(2)若弦AB過定點M(0,
3
2
)
,試探究弦A′B′是否也必過某個定點.若有,請證明;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=n+n2(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=n2 an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=cos2ωx-sin2ωx+2
3
cosωxsinωx(ω>0),f(x)的兩條相鄰對稱軸間的距離大于等于
π
2

(1)求ω的取值范圍;
(2)在△ABC中,角A,B,C所對的邊依次為a,b,c═
3
,b+c=3f(A)=1,當ω=1時,求△ABC的面積.

查看答案和解析>>

同步練習冊答案