A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 分別取過C點的三條面對角線的中點,則此三點為棱柱的另一個底面的三個頂點,利用中位線定理證明.于是三棱柱的高為正方體體對角線的一半.
解答 解:連結A1C,AC,B1C,D1C,
分別取AC,B1C,D1C的中點E,F,G,連結EF,EG,FG.
由中位線定理可得PE$\frac{∥}{=}$A1C,QF$\frac{∥}{=}$A1C,RG$\frac{∥}{=}$A1C.
又A1C⊥平面PQR,∴三棱柱PQR-EFG是正三棱柱.
∴三棱柱的高h=PE=$\frac{1}{2}$A1C=$\frac{\sqrt{3}}{2}$.
故選:D.
點評 本題考查了正棱柱的結構特征,作出三棱柱的底面是計算棱柱高的關鍵,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | ①②③ | B. | ③①② | C. | ②③① | D. | ②①③ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<b | B. | a=b | C. | a>b | D. | a≠b |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com