若a,b,c均為實數(shù),且a=x2-2x+
π
2
,b=y2-2y+
π
2
,c=z2-2z+
π
2
,試用反證法證明:a,b,c中至少有一個大于0.
考點:反證法與放縮法
專題:證明題,反證法
分析:用反證法,假設(shè)a,b,c都小于或等于0,推出a+b+c的值大于0,出現(xiàn)矛盾,從而得到假設(shè)不正確,命題得證.
解答: 證明:假設(shè)a,b,c都不大于0即a≤0,b≤0,c≤0
根據(jù)同向不等式的可加性可得a+b+c≤0①
又a+b+c=x2-2x+
π
2
+y2-2y+
π
2
+z2-2z+
π
2
=(x-1)2+(y-1)2+(z-1)2+
3
2
π
-3>0與①式矛盾
所以假設(shè)不成立,即原命題的結(jié)論a,b,c中至少有一個大于0.
點評:本題的考點是反證法與放縮法,主要考查用反證法證明數(shù)學(xué)命題,推出矛盾,是解題的關(guān)鍵和難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,且過點A(0,1).
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于M,N兩點.求證:直線恒過定點P.并求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-x3
x4+2x2+1
的最大值與最小值之積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<
π
2
,0<y<
π
2
,且sinx=xcosy,則( 。
A、y<
x
4
B、
x
4
<y<
x
2
C、
x
2
<y<x
D、x<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=-
1
an+1
,若k是5的倍數(shù),且ak=2,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,若橢圓上存在點P使線段PF1與以橢圓短軸為直徑的圓相切,切點恰為線段PF1的中點,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表面積為4
3
的正四面體的各個頂點都在同一個球面上,則此球的體積為( 。
A、
6
3
π
B、
2
6
3
π
C、
6
π
D、
6
27
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C的漸進(jìn)線方程為4x±3y=0,一條準(zhǔn)線方程為y=
16
5
,則雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+∅)(A>0,ω>0,|∅|<
π
2
)的部分圖象如圖所示,若將f(x)圖象上所有點的橫坐標(biāo)縮短來原來的
1
2
倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A、y=sin(4x+
π
6
B、y=sin(4x+
π
3
C、y=sin(x+
π
6
D、y=sin(x+
π
12

查看答案和解析>>

同步練習(xí)冊答案