化簡(jiǎn):(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
(n為奇數(shù)).
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:當(dāng)n為奇數(shù)時(shí),(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
=(
1
2
2+(
1
2
4+(
1
2
6+…+(
1
2
2m,m∈N*,由此能求出結(jié)果.
解答: 解:∵2=3-1,4=5-1,6=7-1,
∴n-2=2k+1-1,.即n=2k+1,k∈N*,
(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
(n為奇數(shù)).
=(
1
2
2+(
1
2
4+(
1
2
6+…+(
1
2
2m
=
(
1
2
)2[1-(
1
4
)k]
1-(
1
2
)2

=
1
3
(1-
1
4k
)
,k∈N*
點(diǎn)評(píng):本題考查數(shù)列前n項(xiàng)和的求法,是中檔題,解題時(shí)要轉(zhuǎn)化認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AT切⊙O于T,若AT=2
6
,AE=3,AD=4,DE=2,則BC等于( 。
A、3B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+e-x,其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照以上式子規(guī)律:
(1)寫(xiě)出第4個(gè)等式,并猜想第n個(gè)等式;(n∈N*
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,PD⊥平面ABCD,底面是邊長(zhǎng)是1的正方形,M,N分別是AB,PC的中點(diǎn);
(1)求證:MN∥平面PAD;
(2)求證:BC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)n為正整數(shù)時(shí),試比較2n與n2的大小,并給出必要的證明過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,-4tanα),
b
=(4,5cosα).
(1)若
a
b
,求sinα的值;
(2)若
a
b
,且α∈(0,
π
2
),求cos(2α-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若∠BDC=45°,求直線BM與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把5件不同產(chǎn)品擺成一排,若產(chǎn)品A與產(chǎn)品C不相鄰,則不同的擺法有
 
種.

查看答案和解析>>

同步練習(xí)冊(cè)答案