(本小題滿分12分)袋中裝有35個(gè)球,每個(gè)球上都標(biāo)有1到35的一個(gè)號(hào)碼,設(shè)號(hào)碼為n的球重克,這些球等可能地從袋中被取出.

(1)如果任取1球,試求其重量大于號(hào)碼數(shù)的概率;

(2)如果不放回任意取出2球,試求它們重量相等的概率;

(3)如果取出一球,當(dāng)它的重量大于號(hào)碼數(shù),則放回,攪拌均勻后重。划(dāng)它的重量小于號(hào)碼數(shù)時(shí),則停止取球.按照以上規(guī)則,最多取球3次,設(shè)停止之前取球次數(shù)為,求E.

 

【答案】

(1);(2) ;(3)E.=1

【解析】古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強(qiáng)調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗(yàn)的意義以及每個(gè)基本事件的含義是解決問(wèn)題的前提,正確把握各個(gè)事件的相互關(guān)系是解決問(wèn)題的關(guān)鍵.解決問(wèn)題的步驟是:計(jì)算滿足條件的基本事件個(gè)數(shù),及基本事件的總個(gè)數(shù),然后代入古典概型計(jì)算公式進(jìn)行求解.

(1)任意取出1球,共有6種等可能的方法,要求其重量大于號(hào)碼數(shù)的概率,我們只要根據(jù)號(hào)碼為n的球的重量為n2-6n+12克,構(gòu)造關(guān)于n的不等式,解不等式即可得到滿足條件的基本事件的個(gè)數(shù),代入古典概型公式即可求解.

(2)我們要先計(jì)算出不放回地任意取出2球的基本事件總個(gè)數(shù),然后根據(jù)重量相等構(gòu)造方程解方程求出滿足條件的基本事件的個(gè)數(shù),代入古典概型計(jì)算公式即可求解.

(3)分析隨機(jī)變量的取值,得到概率值求解分布列和期望值。

解:(1)由>n

可得……………………1分

,

由于共30個(gè)數(shù),…………3分

,       ……………………4分

(2)因?yàn)槭遣环呕厝我馊〕?球,故這是編號(hào)不相同的兩個(gè)球,設(shè)它們的編號(hào)分別為

    ………5分

     所以

)…………7分

故概率為              …………………………………8分

(3)              

;

;  

∴E.=1.    ……………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案