16.下列說(shuō)法中正確的是①②③
①設(shè)隨機(jī)變量X服從二項(xiàng)分布B(6,$\frac{1}{2}$),則P(X=3)=$\frac{5}{16}$
②已知隨機(jī)變量X服從正態(tài)分布N(2,σ2)  且P(X<4)=0.9,則P(0<X<2)=0.4
③${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

分析 ①根據(jù)二項(xiàng)分布的公式進(jìn)行求解,
②根據(jù)正態(tài)分布的對(duì)稱(chēng)性結(jié)合概率關(guān)系進(jìn)行i區(qū)就
③根據(jù)積分的幾何意義進(jìn)行求解判斷,
④根據(jù)期望和方差的公式進(jìn)行判斷.

解答 解:①∵隨機(jī)變量X服從二項(xiàng)分布B(6,$\frac{1}{2}$),
∴P(X=3)=${C}_{6}^{3}$($\frac{1}{2}$)3×(1-$\frac{1}{2}$)3=$\frac{5}{16}$.故①正確,
②已知隨機(jī)變量X服從正態(tài)分布N(2,σ2)  且P(X<4)=0.9,則P(X>4)=P(X<0)=1-0.9=0.1,
則P(0<X<2)=0.5-0.1=0.4,故②正確,
③根據(jù)積分的幾何意義得${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx表示-1≤x≤0,對(duì)應(yīng)$\frac{1}{4}$單元圓的面積$\frac{π}{4}$,${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示0≤x≤1,對(duì)應(yīng)$\frac{1}{4}$單元圓的面積$\frac{π}{4}$,
故${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$成立,故③正確,
④E(2X+3)=2E(X)+3,D(2X+3)=4D(X),故④錯(cuò)誤,
故答案為:①②③

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,圓O上的弦AB不為直徑,DA切圓O于點(diǎn)A,點(diǎn)E在BA的延長(zhǎng)線上且DE∥AC,點(diǎn)C為BD與圓交點(diǎn),若AE=3,DE=6,CD=2,則AD=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z1=-3+i,z2=1-i,則復(fù)數(shù)z=z1-z2在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某校高一年級(jí)部分班級(jí)開(kāi)展教改實(shí)驗(yàn),某次水平測(cè)試后,從實(shí)驗(yàn)班和非實(shí)驗(yàn)班各隨機(jī)抽取45名學(xué)生,其中數(shù)學(xué)成績(jī)優(yōu)秀與非優(yōu)秀人數(shù)統(tǒng)計(jì)如下表(未完成):
優(yōu)秀非優(yōu)秀總計(jì)
實(shí)驗(yàn)班2545
非實(shí)驗(yàn)班1045
總計(jì)90
(1)請(qǐng)完成上面的2×2列聯(lián)表,并判斷若按95%的可靠性要求,能否認(rèn)為“成績(jī)優(yōu)秀與教改實(shí)驗(yàn)有關(guān)系”;
(2)從上表全部90人中有放回抽取4次,每次抽取1人,記被抽取的4人數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)為ξ,若每次抽取的結(jié)果相互獨(dú)立,求ξ的分布列及數(shù)學(xué)期望Eξ
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知a>1,b>2,且$\frac{1}{a-1}+\frac{1}{b-2}$=3,則a+4b的最小值為(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在△ABC中,MN∥BC,$\frac{AM}{MB}$=$\frac{1}{2}$,MC,NB交于點(diǎn)O,若△OMN的面積等于a,得△OBC的面積等于9a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某重點(diǎn)大學(xué)自主招生考試過(guò)程依次為自薦材料審查、筆試、面試共三輪考核.規(guī)定:只能通過(guò)前一輪考核才能進(jìn)入下一輪的考核,否則將被淘汰;三輪考核都通過(guò)才算通過(guò)該高校的自主招生考試.學(xué)生甲三輪考試通過(guò)的概率分別為$\frac{2}{3}$,$\frac{3}{4}$,$\frac{4}{5}$,且各輪考核通過(guò)與否相互獨(dú)立.
(1)求甲通過(guò)該高校自主招生考試的概率;
(2)若學(xué)生甲每通過(guò)一輪考核,則家長(zhǎng)獎(jiǎng)勵(lì)人民幣1000元作為大學(xué)學(xué)習(xí)的教育基金.記學(xué)生甲得到教育基金的金額為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.?dāng)?shù)列{an}的通項(xiàng)公式為an=13-2n,則其前n項(xiàng)和Sn達(dá)到最大值時(shí),n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z=$\frac{2016+i}{i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1-2016iB.1+2016iC.2016+iD.2016-i

查看答案和解析>>

同步練習(xí)冊(cè)答案