(2012•孝感模擬)已知向量
a
=(3,-2),
b
=(x,y-1),若
a
b
,則4x+8y的最小值為
4
2
4
2
分析:利用兩個(gè)向量共線的性質(zhì),由兩個(gè)向量共線時(shí),它們的坐標(biāo)對(duì)應(yīng)成比例,建立等式得出2x+3y=3,再利用基本不等式得出4x+8y的最小值.
解答:解:∵向量
a
=(3,-2),
b
=(x,y-1),
a
b
,
則 3(y-1)-(-2)x=0,即 2x+3y=3,
再由基本不等式得,4x+8y=22x+23y≥2(22x•23y 
1
2
=4
2

當(dāng)且僅當(dāng)2x=3y時(shí)取等號(hào)
所以4x+8y的最小值為4
2

故答案為:4
2
點(diǎn)評(píng):本題考查兩個(gè)向量共線的坐標(biāo)表示,以及基本不等式求最值,屬于簡(jiǎn)單題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)已知cos(α+
π
6
)-sinα=
2
3
3
,則sin(α-
6
)的值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬(wàn)元,此外每生產(chǎn)1百件這樣的產(chǎn)品,還需增加投入0.25萬(wàn)元,經(jīng)市場(chǎng)調(diào)查知這種產(chǎn)品年需求量為5百件,產(chǎn)品銷(xiāo)售數(shù)量為t(百件)時(shí),銷(xiāo)售所得的收入為(5t-
12
t2)
萬(wàn)元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x百件,生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得到的利潤(rùn)關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x).
(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)在△ABC中,∠A=90°,且
AB
BC
=-1,則邊AB的長(zhǎng)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)如圖,在A、B間有四個(gè)焊接點(diǎn),若焊接點(diǎn)脫落,而可能導(dǎo)致電路不通,如今發(fā)現(xiàn)A、B之間線路不通,則焊接點(diǎn)脫落的不同情況有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(jī)(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫(huà)出如右圖所示的部分頻率分布直方圖,請(qǐng)觀察圖形信息,回答下列問(wèn)題:
(I )求7O~80分?jǐn)?shù)段的學(xué)生人數(shù);
(II)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);
(III)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成的六段(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績(jī),決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差大于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案