分析 由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
解答 解:根據(jù)y=Asin(ωx+φ)(ω>0,φ∈(0,π)的圖象,可得A=$\frac{2}{3}$,
$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=-$\frac{π}{12}$-(-$\frac{7π}{12}$),∴ω=2,
再根據(jù)五點法作圖可得2•(-$\frac{π}{12}$)+φ=$\frac{π}{2}$,∴φ=$\frac{2π}{3}$,
故函數(shù)的解析式為 y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}$),
故答案為:y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}$).
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -22 | B. | 22 | C. | -46 | D. | 46 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{\sqrt{7}}{4}$ | D. | $\frac{\sqrt{7}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.88 | B. | 0.90 | C. | 0.92 | D. | 0.95 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com