A. | 對任意q∈R(q≠0),方程組都有唯一解 | |
B. | 對任意q∈R(q≠0),方程組都無解 | |
C. | 當(dāng)且僅當(dāng)$q=\frac{1}{2}$時,方程組有無窮多解 | |
D. | 當(dāng)且僅當(dāng)$q=\frac{1}{2}$時,方程組無解 |
分析 由等比數(shù)列{an}的公比為q,得到$\frac{{a}_{1}}{{a}_{2}}=\frac{{a}_{3}}{{a}_{4}}$=$\frac{1}{q}$,由此利用兩直線平行與重合的性質(zhì)能求出結(jié)果.
解答 解:∵等比數(shù)列{an}的公比為q,
∴$\frac{{a}_{1}}{{a}_{2}}=\frac{{a}_{3}}{{a}_{4}}$=$\frac{1}{q}$,
∴當(dāng)$\frac{1}{q}$≠2,即q$≠\frac{1}{2}$時,關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}{a_1}x+{a_3}y=2\\{a_2}x+{a_4}y=1\end{array}\right.$無解;
當(dāng)且僅當(dāng)$\frac{1}{q}=2$,即q=$\frac{1}{2}$時,方程組有無窮多解.
故選:C.
點(diǎn)評 本題考查命題真假的判斷,考查等比數(shù)列、直線平行等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,-\frac{1}{3})$ | B. | $(-\frac{1}{3},+∞)$ | C. | (3,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}$-y2=1 | B. | x2-$\frac{{y}^{2}}{2}$=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{3}$-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $16-\frac{2π}{3}$ | B. | $8-\frac{4π}{3}$ | C. | $16-\frac{4π}{3}$ | D. | $16(1-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>1009? | B. | i<1009? | C. | i>2018? | D. | i<2018? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2i | B. | 1-2i | C. | 2+i | D. | 2-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com