分析 (1)利用奇函數(shù)的定義,或f(0)=0,即可得出結論;
(2)根據(jù)單調性的證明步驟,即可證明結論.
解答 解:由題:f(x)=$\frac{{λ•{2^x}+(λ-2)}}{{{2^x}+1}}$=$\frac{{λ({2^x}+1)-2}}{{{2^x}+1}}$=λ$-\frac{2}{{{2^x}+1}}$.
(1)法一:∵f(x)為奇函數(shù),∴f(-x)=-f(x)
∴λ$-\frac{2}{{{2^{-x}}+1}}$=-λ+$\frac{2}{{{2^x}+1}}$.
∴2λ=$\frac{2}{{{2^x}+1}}$+$\frac{2}{{{2^{-x}}+1}}$=$\frac{2}{{{2^x}+1}}$+$\frac{{2•{2^x}}}{{{2^x}+1}}$=$\frac{{2({2^x}+1)}}{{{2^x}+1}}$=2.
∴λ=1.
經檢驗 當λ=1時,f(x)為奇函數(shù).
∴存在λ=1,使f(x)為奇函數(shù).
法二:若存在實數(shù)λ,使f(x)為奇函數(shù),則f(0)=0,即λ$-\frac{2}{{{2^0}+1}}$=0
∴λ=1.
當λ=1時,f(x)=1$-\frac{2}{{{2^x}+1}}$,定義域R關于原點對稱
且f(x)+f(-x)=(1$-\frac{2}{{{2^x}+1}}$)+(1$-\frac{2}{{{2^{-x}}+1}}$)
=2$-\frac{2}{{{2^x}+1}}$$-\frac{{2•{2^x}}}{{{2^x}+1}}$=$2-\frac{{2({2^x}+1)}}{{{2^x}+1}}=0$
∴存在λ=1,使f(x)為奇函數(shù).
(2)f(x)是增函數(shù),證明如下:
設x1,x2∈且 x1<x2,則
f(x1)-f(x2)=(λ$-\frac{2}{{{2^{x_1}}+1}}$)-(λ$-\frac{2}{{{2^{x_2}}+1}}$)=$\frac{{2({2^{x_1}}-{2^{x_2}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$
由x1<x2可知:0<${2^{x_1}}$<${2^{x_2}}$,∴${2^{x_1}}$-${2^{x_2}}$<0,又${2^{x_1}}$+1>0,${2^{x_2}}$+1>0.
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴λ∈R,f(x)是定義域上增函數(shù).
點評 本題考查奇函數(shù)、單調性的定義,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{25}{6}$ | B. | $\frac{25}{8}$ | C. | $\frac{25}{3}$ | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | C. | 銳角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y軸對稱 | B. | 原點對稱 | C. | 直線y=x對稱 | D. | 直線y=-x對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com