設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:

(1)ab+bc+ca≤

(2).

 

(1)見(jiàn)解析;

(2)見(jiàn)解析.

【解析】(1)由.

由題設(shè)得,即.

所以3(ab+bc+ca)≤1,即.

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719512525838569/SYS201411171951254927634245_DA/SYS201411171951254927634245_DA.006.png">+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即

≥a+b+c,所以.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科函數(shù)圖像(解析版) 題型:選擇題

函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)為(  )

A.3

B.2

C.1

D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科余弦定理(解析版) 題型:選擇題

某人要制作一個(gè)三角形,要求它的三條高的長(zhǎng)度分別為,,,則此人能(    )

A.不能作出這樣的三角形

B.作出一個(gè)銳角三角形

C.作出一個(gè)直角三角形

D.作出一個(gè)鈍角三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科兩角和與差的三角函數(shù)、倍角公式(解析版) 題型:解答題

△ABC的三個(gè)內(nèi)角為A,B,C,當(dāng)A為時(shí),cosA+2cos取得最大值,

且這個(gè)最大值為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科兩角和與差的三角函數(shù)、倍角公式(解析版) 題型:選擇題

函數(shù)y=sin(+x)cos(-x)的最大值為(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科三角函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題

已知>0,函數(shù)f(x)=sin(x+)在(,)上單調(diào)遞減,則的取值范圍是(    )

A.[,]

B.[,]

C.[0,]

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科三角函數(shù)圖象變換(解析版) 題型:選擇題

如圖是函數(shù)y=Asin(x+)(x∈R)在區(qū)間[-,]上的圖象,為了得到這個(gè)函數(shù)圖象,只要將y=sinx(x∈R)的圖象上所有點(diǎn)(  )

A. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變

B. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變

C. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變

D. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科預(yù)測(cè)題(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足。

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科選擇題專(zhuān)項(xiàng)訓(xùn)練(解析版) 題型:選擇題

已知函數(shù)則函數(shù)的零點(diǎn)個(gè)數(shù)是(    )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案