19.甲、乙兩個(gè)工廠2015年1月份的產(chǎn)值相等,甲廠的產(chǎn)值逐月增加,且每月增長(zhǎng)的產(chǎn)值相同;乙廠的產(chǎn)值也逐月增加,且每月增長(zhǎng)的百分率相同,已知2016年1月份的產(chǎn)值又相等,則2016年7月份產(chǎn)值( 。
A.甲廠高B.乙廠高
C.甲、乙兩廠相等D.甲、乙兩廠高低無(wú)法確定

分析 設(shè)甲廠的產(chǎn)值每月增加的產(chǎn)值為 x,則n個(gè)月的增產(chǎn)的百分率為$\frac{nx}{1+nx}$,甲廠的增長(zhǎng)率逐月增大,根據(jù)2016年1月份之后,甲廠的增長(zhǎng)率大于乙廠 的增長(zhǎng)率,從而得出結(jié)論.

解答 解:設(shè)甲廠的產(chǎn)值每月增加的產(chǎn)值為 x,x>0,則n個(gè)月的增產(chǎn)的百分率為$\frac{nx}{1+nx}$,
則n+1個(gè)月的增產(chǎn)的百分率為$\frac{(n+1)x}{1+(n+1)x}$,由于$\frac{nx}{1+nx}$<$\frac{(n+1)x}{1+(n+1)x}$,故甲廠的增長(zhǎng)率逐月增大.
由于2016年1月份的產(chǎn)值相等,故2016年1月份之前,甲廠的增長(zhǎng)率小于乙廠 的增長(zhǎng)率,
2016年1月份之后,甲廠的增長(zhǎng)率大于乙廠 的增長(zhǎng)率,故2016年7月份產(chǎn)值高的工廠是甲廠.
故選A.

點(diǎn)評(píng) 本題考查等差數(shù)列、等比數(shù)列的定義和性質(zhì),不等式性質(zhì)的應(yīng)用,判斷2016年1月份之后,甲廠的增長(zhǎng)率大于乙廠 的增長(zhǎng)率,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰好存在兩個(gè)正整數(shù)解,則實(shí)數(shù)a的取值范圍是$[-\frac{e^3}{4},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列敘述正確的有( 。
①集合A={(x,y)|x+y=5},B={(x,y)|x-y=-1},則A∩B={2,3}
②若函數(shù)f(x)=$\frac{4-x}{a{x}^{2}+x-3}$的定義域?yàn)镽,則實(shí)數(shù)a<-$\frac{1}{12}$
③函數(shù)f(x)=x-$\frac{1}{x}$,x∈(-2,0)是奇函數(shù)
④函數(shù)f(x)=-x2+3x+b在區(qū)間(2,+∞)上是減函數(shù).
A.①③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=16,b=16$\sqrt{3}$,B+C=5A,則角C=90°或30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)是側(cè)面對(duì)角線BC1,AD1上一點(diǎn),若BED1F是菱形,則其在底面ABCD上投影的四邊形面積( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x+x,則f(x)=$\left\{\begin{array}{l}{{2}^{x}-x,(x>0)}\\{0,(x=0)}\\{-{2}^{-x}+x,(x<0)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知等差數(shù)列{an}中,a3=$\frac{π}{12}$,則cos(a1+a2+a6)=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},0≤x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,存在x2>x1≥0,使得f(x1)=f(x2),則x1•f(x2)的取值范圍為( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$)B.[$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$)C.[$\frac{\sqrt{2}}{4}$,1)D.[1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB=2BC,AC=AA1=$\sqrt{3}$BC,則直線AB1與平面BB1C1C所成的角的正切值為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{39}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案