【題目】在△ABC中,已知 ,若∠A、∠B、∠C的對邊分別為a、b、c,且b+c=4,求a的取值范圍.
科目:高中數學 來源: 題型:
【題目】在某校舉行的數學競賽中,全體參賽學生的競賽成績近似地服從正態(tài)分布N(70,100).已知成績在90分以上的學生有12人.
(1)試問此次參賽學生的總數約為多少人?
(2)若成績在80分以上(含80分)為優(yōu),試問此次競賽成績?yōu)閮?yōu)的學生約為多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , a1=1,2an+1=an , 若對于任意n∈N* , 當t∈[﹣1,1]時,不等式x2+tx+1>Sn恒成立,則實數x的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
步數 性別 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步數超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
(2)若小王以這40位好友該日走路步數的頻率分布來估計其所有微信好友每日走路步數的概率分布,現從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,其前項和為.
(1)若對任意的, , , 組成公差為4的等差數列,且,求;
(2)若數列是公比為()的等比數列, 為常數,
求證:數列為等比數列的充要條件為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}為等比數列,其前n項和為Sn , 已知a1+a4=﹣ ,且對于任意的n∈N*有Sn , Sn+2 , Sn+1成等差數列;
(1)求數列{an}的通項公式;
(2)已知bn=n(n∈N+),記 ,若(n﹣1)2≤m(Tn﹣n﹣1)對于n≥2恒成立,求實數m的范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com