已知動點(diǎn)M到兩個定點(diǎn)F1(-3,0),F(xiàn)2(3,0)的距離之和為10,A、B是動點(diǎn)M軌跡C上的任意兩點(diǎn).
(1)求動點(diǎn)M的軌跡C的方程;
(2)若原點(diǎn)O滿足條件,點(diǎn)P是C上不與A、B重合的一點(diǎn),如果PA、PB的斜率都存在,問kPA•kPB是否為定值?若是,求出其值;若不是,請說明理由.
【答案】分析:(1)由題意可知點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的橢圓,其中,由此能夠推導(dǎo)出點(diǎn)M的軌跡方程.
(2)設(shè)A(x,y),B(-x,-y).設(shè)P(5cosθ,4sinθ),,,.A在橢圓上,,,由此能夠推導(dǎo)出kPA•kPB為定值-
解答:解:(1)設(shè)點(diǎn)M的坐標(biāo)為(x,y),
∵|MF1|+|MF2|=10>|F1F2|=6,
∴點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的橢圓,
其中
故點(diǎn)M的軌跡方程為,
(2)設(shè)A(x,y),當(dāng)時,
必有點(diǎn)A、B關(guān)于原點(diǎn)O對稱,
∴B(-x,-y).
設(shè)P(5cosθ,4sinθ),
,,

∵A在橢圓上,∴,∴

∴kPA•kPB為定值-
點(diǎn)評:本題綜合考查橢圓的性質(zhì)及其應(yīng)用和直線與橢圓的位置關(guān)系,難度較大,解題時要認(rèn)真審題,仔細(xì)解答,避免出現(xiàn)不必要的錯誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)M到兩個定點(diǎn)F1(-3,0),F(xiàn)2(3,0)的距離之和為10,A、B是動點(diǎn)M軌跡C上的任意兩點(diǎn).
(1)求動點(diǎn)M的軌跡C的方程;
(2)若原點(diǎn)O滿足條件
AO
OB
,點(diǎn)P是C上不與A、B重合的一點(diǎn),如果PA、PB的斜率都存在,問kPA•kPB是否為定值?若是,求出其值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C是動點(diǎn)M到兩個定點(diǎn)O(0,0)、A(3,0)距離之比為
12
的點(diǎn)的軌跡.
(1)求曲線C的方程;
(2)求過點(diǎn)N(1,3)與曲線C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C是動點(diǎn)M到兩個定點(diǎn)O(0,0)、A(3,0)距離之比為
1
2
的點(diǎn)的軌跡.
(1)求曲線C的方程;
(2)求過點(diǎn)N(1,3)與曲線C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C是動點(diǎn)M到兩個定點(diǎn)O(0,0)、A(3,0)距離之比為的點(diǎn)的軌跡.
(1)求曲線C的方程;
(2)求過點(diǎn)N(1,3)與曲線C相切的直線方程.

查看答案和解析>>

同步練習(xí)冊答案