如圖,P是雙曲線(a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類似地:P是橢圓(a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且,則|OM|的取值范圍是(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線C的方程為
y2
a2
-
x2
b2
=1(a>0,b>0),離心率e=
5
2
,頂點(diǎn)到漸近線的距離為
2
5
5

(Ⅰ)求雙曲線C的方程;
(Ⅱ)如圖,P是雙曲線C上一點(diǎn),A,B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限,若
AP
PB
,λ∈[
1
3
,2]
,求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們定義雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與直線y=±b的交點(diǎn)為“虛近點(diǎn)”,如圖點(diǎn)P是雙曲線C在第一象限的漸近點(diǎn),直線y=b與雙曲線C的左、右分支分別交于點(diǎn)A、B,F(xiàn)1、F2分別是雙曲線C的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求證:PF1⊥PF2;
(2)求證:PF1平分∠APO;
(3)你能否在未證明(1)下,直接證明(2)?請(qǐng)寫下你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=
1
2
|NF1|,…,|OM|=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP,則|OM|的取值范圍是
(0,c)
(0,c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且
F2M
MP
=0
.有一同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=
1
2
|NF1|=…=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且
F2M
MP
=0
.則|OM|的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案