設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有唯一實(shí)根,求實(shí)數(shù)的取值范圍.
(1)的單調(diào)增區(qū)間是單調(diào)遞減區(qū)間是
(2)
解析試題分析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/a/jq0qc1.png" style="vertical-align:middle;" />
當(dāng)時(shí), 當(dāng)時(shí),
故的單調(diào)增區(qū)間是單調(diào)遞減區(qū)間是
(2)由得: 令
則時(shí),
故在上遞減,在上遞增,
要使方程在區(qū)間上只有一個(gè)實(shí)數(shù)根,
則必須且只需 或或
解之得或
所以
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,方程根的討論方法。
點(diǎn)評:中檔題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及方程根的討論問題,往往通過研究函數(shù)的單調(diào)性,最值等,明確函數(shù)圖象的大致形態(tài),確定出方程根的情況。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)=x+ax2+blnx,曲線y =過P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若存在,對任意的,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若曲線在和處的切線互相平行,求的值及函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意,均存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過點(diǎn)可作曲線的三條切線,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com