9.已知數(shù)列{an}滿足$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,Sn為{an}的前n項(xiàng)和,則S10=( 。
A.210B.180C.185D.190

分析 由$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,得$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n-1}{3n-4}=3n-1$,(n≥2),$\frac{{a}_{n}}{3n-1}$=$\frac{3n+2}{3n-1}$,從而an=3n+2,n≥2.a(chǎn)1=10,由此能求出S10

解答 解:∵$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,①
∴$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n-1}{3n-4}=3n-1$,(n≥2),②
①÷②,得$\frac{{a}_{n}}{3n-1}$=$\frac{3n+2}{3n-1}$,
∴an=3n+2,n≥2.
當(dāng)n=1時(shí),$\frac{{a}_{1}}{2}=3+2=5$,解得a1=10,
∵Sn為{an}的前n項(xiàng)和,
∴S10=10+3(2+3+…+10)+18=190.
故選:D.

點(diǎn)評(píng) 本題考查數(shù)列的前10項(xiàng)和的求法,考查等差數(shù)列、作商法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列結(jié)論正確的是( 。
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知平面向量$\overline{a}$,$\overline$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x+1}-1,x≤0}\\{|lg\frac{1}{x}|,x>0}\end{array}\right.$,若g(x)=f(x)-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞)∪{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A、B、C分別對(duì)應(yīng)邊a,b,c.若9a2+9b2-19c2=0,求$\frac{\frac{1}{tanC}}{\frac{1}{tanA}+\frac{1}{tanB}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x+sinx.x∈(-$\frac{π}{2}$,$\frac{π}{2}$),函數(shù)g(x)的定義域?yàn)閷?shí)數(shù)集R,函數(shù)h(x)=f(x)+g(x),
(1)若函數(shù)g(x)是奇函數(shù),判斷并證明函數(shù)h(x)的奇偶性;
(2)若函數(shù)g(x)是單調(diào)增函數(shù),用反證法證明函數(shù)h(x)的圖象與x軸至多有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=mlnx,g(x)=$\frac{x}{x+1}$(x>0).
(1)當(dāng)m=1時(shí),求曲線E:y=f(x)g(x)在x=1處的切線方程;
(2)當(dāng)m=1時(shí),$k=\frac{f(x)}{(x+1)g(x)}$恰有一個(gè)實(shí)數(shù)根,求k的取值范圍;
(3)討論函數(shù)F(x)=f(x)-g(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.Sn為數(shù)列{an}的前n項(xiàng)和.已知Sn=n2+2n
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列滿足{bn}滿足log2bn=n+log2(an-2),求數(shù)列{bn}的前n項(xiàng)和Tn
(3)已知數(shù)列{cn}滿足cn=-$\frac{{{T_n}-6}}{{{2^{n+1}}}}$+8,若對(duì)任意n∈N*,存在x0∈[-2,2],使得c1+c2+c3+…+cn≤x2+x-2a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)的定義域?yàn)镽,且滿足f(2)=2,f′(x)-1>0,則不等式f(x)-x>0的解集為(2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案