分析:(1)由S
n是{a
n}的前n項(xiàng)和,且3a
n+1+2S
n=3(n∈N
+);可得3a
n+2s
n-1=3(n≥2);作差得a
n+1與a
n的關(guān)系,從而求出{a
n}的通項(xiàng)公式;
(2)求出{a
n}的前n項(xiàng)和S
n,由
k≤Sn恒成立,得k的取值范圍;從而求出k的最大值.
解答:解:(1)∵數(shù)列{a
n}的前n項(xiàng)和為S
n,a
1=1,3a
n+1+2S
n=3(n∈N
+)①;
∴3a
n+2s
n-1=3(n≥2)②;
①-②得3a
n+1-3a
n+2a
n=0(n≥2),
∴a
n+1=
a
n(n≥2),
∴數(shù)列{a
n}是首項(xiàng)為a
1=1,公比q=
的等比數(shù)列,
∴{a
n}的通項(xiàng)公式為:a
n=a
1q
n-1=
()n-1(n為正整數(shù));
(2)∵等比數(shù)列{a
n}的前n項(xiàng)和S
n=
=
=
[1-
()n],
且
k≤Sn恒成立,∴k≤1-
()n;
又?jǐn)?shù)列{1-
()n}是單調(diào)遞增的,當(dāng)n=1時(shí),數(shù)列中的最小項(xiàng)為
,∴k≤
;
∴實(shí)數(shù)k的最大值為
.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和問題,是中檔題目.