(1+x+x2)(x2-
1
x
6的展開式中的常數(shù)項為
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:根據(jù)題意,寫出(x2-
1
x
6的展開式中的通項為Tr+1,令x的指數(shù)為0,-1,-2可得r的值,由項數(shù)與r的關(guān)系,可得答案.
解答: 解:(x2-
1
x
6的展開式中的通項為Tr+1 =
C
r
6
•(-1)r•x12-3r
令12-3r=0,求得r=4,12-3r=-1,求得r無解,12-3r=-2,求得r無解,
故(1+x+x2)(x2-
1
x
6的展開式中的常數(shù)項為
C
4
6
=15,
故答案為:15.
點評:本題考查等價轉(zhuǎn)化的能力、考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
2
5
5
,F(xiàn)1、F2是橢圓的左、右兩個焦點,B是上頂點,且
BF1
BF2
=-3.
(1)求橢圓C的方程;
(2)若斜率為1且與圓O:x2+y2=
1
2
有公共點的直線l與橢圓交于點A、B,求|AB|的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)為了綠化環(huán)境進行大面積植樹造林,如圖,在區(qū)域{(x,y)|x≥0,y≥0}內(nèi)植樹,第一棵樹在點Al(0,1),第二棵樹在點B1(1,1),第三棵樹在點C1(1,0),第四棵樹在點C2(2,0),接著按圖中箭頭方向每隔一個單位種一棵樹,那么:
(1)第n棵樹所在點坐標是(44,0),則n=
 

(2)第2014棵樹所在點的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(θ+
π
4
)=
3
5
,θ為鈍角,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F(x,y)=(x+y)2+(x-
2
y
2,(x,y∈R,y≠0),則F(x,y)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是周期為2的偶函數(shù),當0≤x≤1時,f(x)=2x(1-x),則f(-
5
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

古埃及數(shù)學中有一個獨特現(xiàn)象:除
2
3
用一個單獨的符號表示以外,其他分數(shù)都要寫成若干個單位分數(shù)和的形式.例如
2
5
=
1
3
+
1
15
,可以這樣來理解:假定有兩個面包,要平均分給5個人,每人
1
2
不夠,每人
1
3
1
3
,再將這
1
3
分成5份,每人得
1
15
,這樣每人分得
1
3
+
1
15
.形如
2
n
(n=5,7,9,11,…)的分數(shù)的分解:
2
5
=
1
3
+
1
15
,
2
7
=
1
4
+
1
28
2
9
=
1
5
+
1
45
,…,按此規(guī)律,則(1)
2
11
=
 
.(2)
2
n
=
 
.(n=5,7,9,11,…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|z1|=|z2|=|z3|=1,則|
z1z2+z2z3+z3z1
z1+z2+z3
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
log
1
3
(2x-1)
的定義域為
 

查看答案和解析>>

同步練習冊答案