“2a>2b”是“l(fā)na>lnb”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:由2a>2b得a>b,
由lna>lnb得a>b>0,
即“2a>2b”是“l(fā)na>lnb”的必要不充分條件,
故選:B
點(diǎn)評:本題主要考查充分條件和必要條件判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠C=90°,AC=
2
,BC=1,若以C為圓心,CB為半徑的圓交AB于點(diǎn)P,則AP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)y=ax2+bx+c(a≠0),將自變量x作下列替換,能使得函數(shù)的值域一定不發(fā)生改變的是( 。
A、x=
1
t
B、x=log2t
C、x=t2
D、x=2t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-4a,3a),(a≠0)則2sinα+cosα=( 。
A、-0.4B、0.4
C、0D、±0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
2-x
x+1
≤0的解集是( 。
A、{x|x<-1或x≥2}
B、{x|-1<x≤2}
C、{x|x≤-1或x≥2}
D、{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-1,若f(a)=3,則實(shí)數(shù)a的值為( 。
A、2B、4C、-2D、2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)(c,0)是它的右焦點(diǎn),經(jīng)過坐標(biāo)原點(diǎn)O的直線l與橢圓相交于點(diǎn)A、B且
FA
FB
=0,|AB|=2|FA|,則橢圓的離心率為( 。
A、
2
-1
B、
2
2
C、
3
-1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在整數(shù)集Z中,被4除所得余數(shù)k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={4n+k|n∈Z},k=0,1,2,3.給出如下四個(gè)結(jié)論:①2012∈[1];②-2∈[2];③Z=[0]∪[2]∪[3];④“整數(shù)a,b屬于同一‘類’”的充要條件是“a-b∈[0]”.其中正確的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,直線A1B和平面A1B1CD所成的角為(  )
A、30°B、45°
C、60°D、15°

查看答案和解析>>

同步練習(xí)冊答案