【題目】以直角坐標系xOy的坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程是,曲線C2的參數(shù)方程是(θ為參數(shù)).
(1)寫出曲線C1,C2的普通方程;
(2)設曲線C1與y軸相交于A,B兩點,點P為曲線C2上任一點,求|PA|2+|PB|2的取值范圍.
【答案】(1) 曲線C1的普通方程為.曲線C2的普通方程為(x-2)2+(y-2)2=4.(2) [32-16,32+16].
【解析】
(1)由題得,再把極坐標化成直角坐標,得到C1的普通方程;消參得到C2的普通方程;(2)設P(2+2cosθ,2+2sinθ),求出|PA|2+|PB|2=
,再求其取值范圍.
(1)由,得.
∴,4ρ2cos2θ+9ρ2sin2θ=36.∴4x2+9y2=36,
即曲線C1的普通方程為.
曲線C2的普通方程為(x-2)2+(y-2)2=4.
(2)由(1)知,點A,B的坐標分別為(0,2),(0,-2),設P(2+2cosθ,2+2sinθ),
則|PA|2+|PB|2=(2+2cosθ)2+(2sinθ)2+(2+2cosθ)2+(4+2sinθ)2=32+16sinθ+16cosθ.
∴|PA|2+|PB|2∈[32-16,32+16],
即|PA|2+|PB|2的取值范圍是[32-16,32+16].
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴了學生甲,把這張牌的花色告訴了學生乙,這時,老師問學生甲和學生乙:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學生甲:我不知道這張牌;學生乙:我知道你不知道這張牌;學生甲:現(xiàn)在我知道這張牌了;學生乙:我也知道了.則這張牌是( )
A. 草花5B. 紅桃
C. 紅桃4D. 方塊5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA//平面MBD.
(2)試問:在線段AB上是否存在一點N,使得平面PCN⊥平面PQB?若存在,試指出點N的位置,并證明你的結論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,P是橢圓上位于第一象限內(nèi)的點,軸,垂足為Q,,,的面積為.
(1)求橢圓F的方程:
(2)若M是橢圓上的動點,求的最大值,并求出取得最大值時M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進行了問卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費者月餅購買量在的概率;
已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應準備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列滿足:對任意,都有,則稱為“緊密”數(shù)列.
(1)設某個數(shù)列為“緊密”數(shù)列,其前項依次為,求的取值范圍;
(2)若數(shù)列的前項和,判斷是否為“緊密”數(shù)列,并說明理由;
(3)設是公比為的等比數(shù)列,前項和為,且與均為“緊密”數(shù)列,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)x,y滿足約束條件若目標函數(shù)z=y-ax(a≠0)取得最大值時的最優(yōu)解有無數(shù)個,則a的值為( )
A.2B.1
C.1或2D.-1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com