(本小題滿分12分)已知雙曲線的兩個焦點為、點在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
(1);(2)與。
解析試題分析:(Ⅰ)由已知及點在雙曲線上得
解得
所以,雙曲線的方程為.
(Ⅱ)由題意直線的斜率存在,故設(shè)直線的方程為
由 得
設(shè)直線與雙曲線交于、,則、是上方程的兩不等實根,
且即且 ①
這時 ,
又
即
所以 即
又 適合①式
所以,直線的方程為與.
考點:雙曲線的標(biāo)準(zhǔn)方程;雙曲線的簡單性質(zhì);直線與雙曲線的綜合應(yīng)用。
點評:用所設(shè)點E、F的坐標(biāo)表示出△OEF的面積是解題的關(guān)鍵。直線與圓錐曲線的綜合應(yīng)用問題,解題過程較為繁瑣,同學(xué)們在解題時一定要有耐心,更要細(xì)心、仔細(xì),避免出現(xiàn)計算錯誤。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.
(1)若P1、P2點的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖所示,橢圓C: 的離心率,左焦點為右焦點為,短軸兩個端點為.與軸不垂直的直線與橢圓C交于不同的兩點、,記直線、的斜率分別為、,且.
(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點,并求出定點坐標(biāo).
(3)當(dāng)弦 的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)給定橢圓:,稱圓心在原點,半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點是橢圓的“準(zhǔn)圓”上的一個動點,過動點作直線使得與橢圓都只有一個交點,且分別交其“準(zhǔn)圓”于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的焦點在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點.
(I)求橢圓的方程;
(II)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)過直角坐標(biāo)平面中的拋物線,直線過焦點且與拋物線相交于,兩點.
⑴當(dāng)直線的傾斜角為時,用表示的長度;
⑵當(dāng)且三角形的面積為4時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題10分)已知,動點滿足,設(shè)動點的軌跡是曲線,直線:與曲線交于兩點.(1)求曲線的方程;
(2)若,求實數(shù)的值;
(3)過點作直線與垂直,且直線與曲線交于兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com