已知函數(shù)f(x)=x2+mx-2n,m,n∈[0,2],則使f(1)≤0成立的概率是(  )
A、
1
4
B、
1
2
C、
3
8
D、
5
8
考點:幾何概型
專題:概率與統(tǒng)計
分析:本題利用幾何概型求解即可.在坐標(biāo)系中,畫出f(1)≤0對應(yīng)的區(qū)域,m,n都是在區(qū)間[0,2]內(nèi),計算它們區(qū)域的面積的比值即得.
解答: 解:f(1)=1+m-2n≤0,即2n-m>1,
如圖,

A(0,1),B(2,1.5),C(2,2),D(0,2)
S四邊形ABCD=
1
2
(
1
2
+
3
2
)×2=2
,P=
S四邊形ABCD
S正方形
=
2
4
=
1
2

故選B.
點評:本題主要考查幾何概型.如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是以
π
2
為周期的函數(shù),且f(
π
3
)=1,則f(-
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b是兩條不同的直線,α、β是兩個不同的平面,則下面四個命題中錯誤的是( 。
A、若a⊥b,a⊥α,b?α,則b∥α
B、若a⊥b,a⊥α,b⊥β,則α⊥β
C、若a⊥β,α⊥β,則a∥α或a?α
D、若 a∥α,α⊥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連續(xù)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  )
A、f(x)有極大值f(3)和極小值f(2)
B、f(x)有極大值f(-3)和極小值f(2)
C、f(x)有極大值f(3)和極小值f(-3)
D、f(x)有極大值f(-3)和極小值f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線
x2
a2
-
y2
b2
=1的兩個焦點,若雙曲線上存在點M使∠F1MF2=60°,且|MF1|-2|MF2|=0,則雙曲線的離心率為(  )
A、
3
B、2
C、
5
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,an+1=3Sn(n∈N*),則下列結(jié)論正確的是( 。
A、數(shù)列是{an}等比數(shù)列
B、數(shù)列a2,a3,…,an是等比數(shù)列
C、數(shù)列是{an}等差數(shù)列
D、數(shù)列a2,a3,…,an是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
3x+1
,數(shù)列{an}是首項等于1且公比等于f(1)的等比數(shù)列;數(shù)列{bn}首項b1=
1
3
,滿足遞推關(guān)系bn+1=f(bn).
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=
an
bn
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯誤的是( 。
A、命題“若m>0,則方程x2+x-m=0有實根”的逆否命題為:“若方程x2+x-m=0無實根,則m≤0”;
B、“x=1”是“x2-3x+2=0”的充分不必要條件;
C、命題p:?x0∈R,|sinx0|>1,則¬p:對?x∈R,|sinx|≤1;
D、命題“若
a
b
=0,則
a
b
中至少有一個為零向量”的否定是:“若
a
b
≠0,則
a
、
b
都不為零向量”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如下圖所示,則該程序運(yùn)行后輸出S的值為( 。
A、10B、12C、15D、18

查看答案和解析>>

同步練習(xí)冊答案