16.在△ABC中,直線AB的方程為3x-2y-1=0,直線AC的方程為2x+3y-18=0.直線BC的方程為3x+4y-m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當(dāng)△ABC的BC邊上的高為1時(shí),求m的值.

分析 (1)利用斜率計(jì)算公式、直線垂直與斜率之間的關(guān)系即可判斷出三角形形狀.
(2)利用直線的交點(diǎn)求法、點(diǎn)到直線的距離公式即可得出.

解答 解:(1)∵直線AB的斜率為${k_{AB}}=\frac{3}{2}$,
直線AC的斜率為${k_{AC}}=-\frac{2}{3}$,kABkAC=-1,
∴直線AB與AC互相垂直,因此,△ABC為直角三角形.
(2)解方程組$\left\{\begin{array}{l}2x+3y-18=0\\ 3x-2y-1=0\end{array}\right.$,得$\left\{\begin{array}{l}x=3\\ y=4\end{array}\right.$,即A(3,4).
設(shè)點(diǎn)A到直線BC的距離為d,則$d=\frac{{\left|{3×3+4×4-m}\right|}}{{\sqrt{{3^2}+{4^2}}}}=\frac{{\left|{25-m}\right|}}{5}$.
由題意知d=1,即$\frac{{\left|{25-m}\right|}}{5}=1$,即m=20或30.

點(diǎn)評(píng) 本題考查了斜率計(jì)算公式、直線垂直與斜率之間的關(guān)系、直線的交點(diǎn)求法、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2-mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實(shí)x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知sin(α-2β)=-$\frac{2}{3}$,cos(2α-β)=$\frac{1}{4}$,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,則cos(α+β)=$\frac{2\sqrt{15}-\sqrt{5}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α,β均為銳角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線L的方程為-Ax-By+C=0,若直線L過(guò)原點(diǎn)和一、三象限,則( 。
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.集合A={(x,y)|y=3x-2},B={(x,y)|y=x+4},則A∩B=( 。
A.{3,7}B.{(3,7)}C.(3,7)D.[3,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=$\sqrt{3}$,($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=16.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=CC1=1,點(diǎn)P是CD上的一點(diǎn),PC=λPD.
(Ⅰ)若A1C⊥平面PBC1,求λ的值;
(Ⅱ)設(shè)λ1=1,λ2=3所對(duì)應(yīng)的點(diǎn)P為P1,P2,二面角P1-BC1-P2的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2x
①若g(x)在(-2,-1)內(nèi)為減函數(shù),求實(shí)數(shù)a的取值范圍;
②若g(x)在區(qū)間(-2,-1)內(nèi)不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案