【題目】定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù) 在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質(zhì)?說明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

【答案】
(1)解:∵f(x)=x2﹣2x+2,x∈[1,2],

對稱軸x=1,開口向上.

當x=1時,取得最小值為f(1)=1,

∴f(x)min=f(1)=1≤1,

∴函數(shù)f(x)在[1,2]上具有“DK”性質(zhì)


(2)解:g(x)=x2﹣ax+2,x∈[a,a+1],其圖象的對稱軸方程為

①當 ,即a≥0時,

若函數(shù)g(x)具有“DK”性質(zhì),則有2≤a總成立,即a≥2.

②當 ,即﹣2<a<0時,

若函數(shù)g(x)具有“DK”性質(zhì),則有 總成立,解得a無解.

③當 ,即a≤﹣2時,g(x)min=g(a+1)=a+3.

若函數(shù)g(x)具有“DK”性質(zhì),則有a+3≤a,解得a無解.

綜上所述,若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質(zhì),則a≥2


【解析】(1)直接根據(jù)新定義進行判斷即可.(2)根據(jù)二次函數(shù)的性質(zhì),求出對稱軸,對其進行討論,根據(jù)新定義求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,x∈R,且f(x)為奇函數(shù). (I)求a的值及f(x)的解析式;
(II)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓過點A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程;

(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點都在軸上方),

(ⅰ)若,求的面積;

(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:

(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)

參考數(shù)據(jù):,,

其中,

(2)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù)

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,底面,底面是梯形,,.

(1)求證:平面平面;

(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)油降耗技術(shù)發(fā)行后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量 x ()與相應(yīng)的生產(chǎn)能耗y(噸標準)的幾組對應(yīng)數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1請畫出上表數(shù)據(jù)的散點圖;

2請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 y 關(guān)于 x 的線性回歸方程

3已知該廠技改前 100 噸甲產(chǎn)品的生產(chǎn)能耗為 90 噸標準煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100 噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?(參考數(shù)值3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

同步練習(xí)冊答案