【題目】已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2,
(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)
(2)直線l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某歌舞團(tuán)有名演員,他們編排了一些節(jié)目,每個(gè)節(jié)目都由四名演員同臺(tái)表演.在一次演出中,他們發(fā)現(xiàn):能適當(dāng)安排若干個(gè)節(jié)目,使團(tuán)中每?jī)擅輪T都恰有一次在這次演出中同臺(tái)表演。求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足.
(1)求曲線的方程;
(2)設(shè)曲線與軸交于、兩點(diǎn),點(diǎn)是曲線上異于、的任意一點(diǎn),直線、分別交直線于點(diǎn)、.試問在軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交橢圓于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在中國武漢舉行,中國隊(duì)以133金64銀42銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次動(dòng)物保護(hù)知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問卷得分不低于70分的市民稱為“動(dòng)物保護(hù)關(guān)注者”,則山圖中表格可得列聯(lián)表如下:
非“動(dòng)物保護(hù)關(guān)注者” | 是“動(dòng)物保護(hù)關(guān)注者” | 合計(jì) | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計(jì) | 25 | 75 | 100 |
(1)請(qǐng)判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“動(dòng)物保護(hù)關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“動(dòng)物保護(hù)達(dá)人”.現(xiàn)在從本次調(diào)查的“動(dòng)物保護(hù)達(dá)人”中利用分層抽樣的方法隨機(jī)抽取6名市民參與環(huán)保知識(shí)問答,再從這6名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“動(dòng)物保護(hù)達(dá)人”又有女“動(dòng)物保護(hù)達(dá)人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四棱錐中,是邊長為2的等邊三角形,,Q為四邊形的外接圓的圓心,平面,M在棱上,且.
(1)證明:平面.
(2)若與平面所成角為60°,求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com