設(shè)O是平面ABC外一點,點M滿足條件
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,則直線AM(  )
分析:根據(jù)題中向量等式,將向量
OM
進行拆分,移項整理可得
MA
=-
1
6
MB
-
1
6
MC
,從而得到向量
MA
、
MB
MC
是共面向量,由此不難得到本題答案.
解答:解:∵
OM
=
3
4
OM
+
1
8
OM
+
1
8
OM

∴由
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,得
3
4
OM
+
1
8
OM
+
1
8
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC

移項,得
3
4
(
OM
-
OA
)=
1
8
(
OB
-
OM
)+
1
8
(
OC
-
OM
)

3
4
AM
=
1
8
MB
+
1
8
MC
,即
MA
=-
1
6
MB
-
1
6
MC

由此可得向量
MA
、
MB
MC
是共面向量,由此可得直線AM在平面ABC內(nèi)
故選:D
點評:本題給出向量等式,求證點M是平面ABC內(nèi)的點,著重考查了平面向量的減法法則和平面向量基本定理及其應(yīng)用等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若
a
b
共線,則存在唯一的實數(shù)λ,使
b
a
;
②空間中,向量
a
b
、
c
共面,則它們所在直線也共面;
③P是△ABC所在平面外一點,O是點P在平面ABC上的射影.若PA、PB、PC兩兩垂直,則O是△ABC垂心.
④若A,B,C三點不共線,O是平面ABC外一點.
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
,則點M一定在平面ABC上,且在△ABC內(nèi)部.
上述命題中正確的命題是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是不共線的三點,O是平面ABC外一點,則在下列條件中,能得到點M與A、B、C一定共面的條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)O是平面ABC外一點,點M滿足條件
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,則直線AM(  )
A.與平面ABC平行B.是平面ABC的斜線
C.是平面ABC的垂線D.在平面ABC內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱九中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)O是平面ABC外一點,點M滿足條件,則直線AM( )
A.與平面ABC平行
B.是平面ABC的斜線
C.是平面ABC的垂線
D.在平面ABC內(nèi)

查看答案和解析>>

同步練習冊答案