已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,且經(jīng)過點(
6
,1),O為坐標(biāo)原點.
(1)求橢圓E的標(biāo)準(zhǔn)方程.
(2)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M點作圓O的兩條切線,切點分別為P,Q,當(dāng)∠PMQ=60°時,試證明點M關(guān)于直線PQ的對稱點在圓O上.
考點:直線與圓錐曲線的關(guān)系,橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線中的最值與范圍問題
分析:(1)由已知得
c
a
=
2
2
6
a2
+
1
b2
=1
a2=b2+c2
,由此能求出橢圓E的標(biāo)準(zhǔn)方程.
(2)連接OM,OP,OQ,設(shè)M(-4,m),由圓的切線性質(zhì)及∠PMQ=60°,可知△OPM為直角三角形且∠OMP=30°,從而可求M(-4,4),進(jìn)而以O(shè)M為直徑的圓K的方程為(x+2)2+(y-2)2=8與圓O:x2+y2=8聯(lián)立,兩式相減可得直線PQ的方程.由此能證明點M關(guān)于直線PQ的對稱點在圓O上.
解答: (1)解:∵橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,
且經(jīng)過點(
6
,1),
c
a
=
2
2
6
a2
+
1
b2
=1
a2=b2+c2
,解得a2=8,b2=4,c2=4,
∴橢圓E的標(biāo)準(zhǔn)方程為
x2
8
+
y2
4
=1

(2)證明:連接OM,OP,OQ,設(shè)M(-4,m)
由圓的切線性質(zhì)及∠PMQ=60°,
知△OPM為直角三角形且∠OMP=30°,
∵|OP|=2
2
,∴|OM|=4
2
,
16+m2
=4
2
,∵m>0,∴m=4,
∴M(-4,4),
∴以O(shè)M為直徑的圓K的方程為(x+2)2+(y-2)2=8
與圓O:x2+y2=8聯(lián)立,兩式相減可得直線PQ的方程為:x-y+2=0.
|OM|=
16+16
=4
2
,O到直線PQ的距離d=
|2|
2
=
2
,
∴M到直線PQ的距離4
2
-
2
=3
2
,
∴點M關(guān)于直線PQ的對稱點到直線PQ的距離為3
2

∵圓O的半徑r=2
2
,O到直線PQ的距離為
2

∴點M關(guān)于直線PQ的對稱點在圓O上.
點評:本題以橢圓的性質(zhì)為載體,考查橢圓的標(biāo)準(zhǔn)方程,考查圓與橢圓的綜合,解題的關(guān)鍵是確定M的坐標(biāo),進(jìn)而確定以O(shè)M為直徑的圓K的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)在R上的導(dǎo)函數(shù)f′(x)<
1
2
,則不等式f(lgx)<
lgx+1
2
的解為(  )
A、(10,+∞)
B、(1,+∞)
C、(0,1)
D、(1,+10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足條件:
x+2y-6<0
x-y+3≤0
2x+y≥0
,則z=|x+1|+|y-1|的取值范圍是( 。
A、[1,3)
B、[0,4)
C、[1,4)
D、[0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的頂點在坐標(biāo)原點O,始邊在y軸的正半軸上,終邊與單位圓交于第三象限內(nèi)的點P,且tanα=-
3
4
;角β的頂點在坐標(biāo)原點O,始邊在x軸的正半軸上,終邊與單位圓交于第二象限內(nèi)的點Q,且tanβ=-2.對于下列結(jié)論:
①P(-
3
5
,-
4
5
);
②|PQ|2=
10+2
5
5
;
③cos∠POQ=-
3
5
;
④△POQ的面積為
5
5
,
其中正確結(jié)論的編號是(  )
A、①②③④B、②③④
C、①③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
0
(ex+sinx)dx(  )
A、e+cos1-2
B、e+cos1
C、e-2
D、e-cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖長方體ABCD-A1B1C1D1中,AB=AD=2AA1=4,E是上底面中心,F(xiàn),M為A1B1與CD的中點.
(Ⅰ)寫出C1M與平面EFAD的位置關(guān)系并證明.
(Ⅱ)求證:平面B1BAF⊥平面EFAD.
(Ⅲ)求幾何體B1EF-BDA的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AB,點M、N分別在棱PD、PC上,且PC⊥平面AMN.
(Ⅰ)求證:AM⊥PD;
(Ⅱ)求二面角P-AM-N的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點分別為A1,A2,上、下頂點分別為 B1,B2,左、右焦點分別為F1,F(xiàn)2,離心率為e.
(l)若|A1B1|=
15
,設(shè)四邊形B1F1B2F2的面積為S1,四邊形A1B1A2B2的面積為S2,且S1=
3
2
S2,求橢圓C的方程;
(2)若F2(3,0),設(shè)直線y=kx與橢圓C相交于P,Q兩點,M,N分別為線段PF2,QF2的中點,坐標(biāo)原點O在MN為直徑的圓上,且
2
2
<e≤
3
2
,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)一種產(chǎn)品,日產(chǎn)量基本保持在1萬件到10萬件之間,由于受技術(shù)水平等因素的影響,會產(chǎn)生一些次品,根據(jù)統(tǒng)計分析,其次品率P(次品率=
日生產(chǎn)次品數(shù)
日生產(chǎn)量
)與日產(chǎn)量x(萬件)之間基本滿足關(guān)系:P=
1
50
x   (1≤x≤5)
1
250
x2-
1
25
x+
1
5
  (5<x≤10)
,目前,每生產(chǎn)1萬件合格的產(chǎn)品可以盈利10萬元,但每生產(chǎn)1萬件次品將虧損40萬元.
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)問當(dāng)生產(chǎn)這種產(chǎn)品的日產(chǎn)量x約為多少時(精確到0.1萬件),企業(yè)可獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案