數(shù)列{an}滿(mǎn)足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
6
7
,則a2011的值為
 
考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用遞推公式求出數(shù)列的前4項(xiàng),得到{an}是以3為周期的周期數(shù)列,從而求出a2011=a1=
6
7
解答: 解:∵數(shù)列{an}滿(mǎn)足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,a1=
6
7
,
a2=2×
6
7
-1
=
5
7

a3=
5
7
-1
=
3
7

a4=2×
3
7
=
6
7
,
∴{an}是以3為周期的周期數(shù)列,
∵2011=670×3+1,
∴a2011=a1=
6
7

故答案為:
6
7
點(diǎn)評(píng):本題考查數(shù)列的第2011項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要注意遞推公式和數(shù)列的周期性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二面角α-l-β的大小為60°,直線(xiàn)m、n滿(mǎn)足m⊥α,n⊥β,則異面直線(xiàn)m、n所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)交該拋物線(xiàn)于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是正項(xiàng)等比數(shù)列,且滿(mǎn)足a1=1,b1=4,a2+b2=10,a26-b3=10.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{Cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2(n-1)(n∈N*)
,若S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2
=4027,則n的值為( 。
A、4027B、2013
C、2014D、4026

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:角θ與φ都是任意角,若滿(mǎn)足θ+φ=90°,則稱(chēng)θ與φ“廣義互余”,已知sin(π+α)=-
1
4
,下列角β中,可能與角α“廣義互余”的是
 

①sinβ=
15
4
;
②cos(π+β)=
1
4
;
③tanβ=
15

④tanβ=
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,C=45°,BC=5,AC=2
2
,則
CA
BC
=( 。
A、10
B、-10
C、10
3
D、-10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
2
<α<β<
π
2
,則
α-β
2
的范圍是( 。
A、(-
π
2
,
π
2
)
B、(-
π
2
,π)
C、(0,
π
2
)
D、(-
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)與拋物線(xiàn)y2=2px(p>0)交于A、B兩點(diǎn),且OA⊥OB,OD⊥AB于D,若點(diǎn)D的坐標(biāo)為(2,1),則p的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案