解:(1)∵λ
+
=( m,λ),
∴直線AP方程為
①
又λ
-4
=(λm,-4),∴直線NP方程為
②
由①、②消去λ得
,即
.
故當(dāng)m=2時(shí),軌跡E是以(0,0)為圓心,以2為半徑的圓:x
2+y
2=4;
當(dāng)m>2時(shí),軌跡E是以原點(diǎn)為中心,以
為焦點(diǎn)的橢圓:
當(dāng)0<m<2時(shí),軌跡E是以中心為原點(diǎn),焦點(diǎn)為
的橢圓.
(2)假設(shè)存在實(shí)數(shù)k滿足要求,此時(shí)有圓Q:(x-k)
2+y
2=(4-k)
2;
橢圓E:
;其右焦點(diǎn)為F(4,0 ),且e=
.
由圓Q與橢圓E的方程聯(lián)立得2y
2-5kx+20k-30=0,
設(shè)M(x
1,y
1),N(x
2,y
2),則
③
△=25k
2-4×2(20k-30),
又|MF|=
,|NF|=
,而|MF|+|NF|=3
;
∴
,
由此可得
④
由③、④得k=1,且此時(shí)△>0.故存在實(shí)數(shù)k=1滿足要求.
分析:(1)由λ
+
=(m,λ),知直線AP方程為
.由λ
-4
=(λm,-4),知直線NP方程為
;所以
,由此結(jié)合m的取值情況能夠求出點(diǎn)P的軌跡E.
(2)假設(shè)存在實(shí)數(shù)k滿足要求,此時(shí)有圓Q:(x-k)
2+y
2=(4-k)
2;橢圓E:
;其右焦點(diǎn)為F(4,0 ),且e=
.由圓Q與橢圓E的方程聯(lián)立得2y
2-5kx+20k-30=0,設(shè)M(x
1,y
1),N(x
2,y
2),則
.△=25k
2-4×2(20k-30),由此能求出存在實(shí)數(shù)k=1滿足要求.
點(diǎn)評(píng):本題考查軌跡方程的求法和判斷k是否存在.解題時(shí)要注意分類討論思想和圓錐曲線性質(zhì)的靈活運(yùn)用.