分析:①確定函數(shù)的單調(diào)性,利用零點存在定理,進(jìn)行驗證;
②確定函數(shù)的單調(diào)性,利用零點存在定理,進(jìn)行驗證;
③函數(shù)在(
,1)上是單調(diào)增函數(shù),f
n+1(x)<f
n(x),即可得到結(jié)論.
解答:解:①f
3(x)=x
3+x-1,∵f
3′(x)=3x
2+1>0,∴函數(shù)在R上是單調(diào)增函數(shù),∵f
3(
)=-
<0,f
3(1)=1>0,∴函數(shù)f
3(x)在區(qū)間(
,1)內(nèi)存在零點,即①不正確;
②f
4(x)=x
4+x-1,∵f
4′(x)=4x
3+1,∵x∈(
,1),∴f
4′(x)>0,∴函數(shù)在(
,1)上是單調(diào)增函數(shù),∵f
4(
)=-
<0,f
4(1)=1>0,∴函數(shù)f
4(x)在區(qū)間(
,1)內(nèi)存在零點,即②正確;
③f
n(x)=x
n+x-1,∵f
n′(x)=nx
n-1+1,∵x∈(
,1),∴f
n′(x)>0,∴函數(shù)在(
,1)上是單調(diào)增函數(shù),∵f
n+1(x)-f
n(x)=x
n(x-1)<0,∴函數(shù)在(
,1)上f
n+1(x)<f
n(x),∵x
n(n>4)為函數(shù)f
n(x)在區(qū)間(
,1)內(nèi)的零點,∴x
n<x
n+1,即③正確
故答案為:②③
點評:本題考查的知識點是零點存在定理,導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.