【題目】某學(xué)校共有6個(gè)學(xué)生餐廳,甲、乙、丙、丁四位同學(xué)每人隨機(jī)地選擇一家餐廳就餐(選擇到每個(gè)餐廳概率相同),則下列結(jié)論正確的是( )
A.四人去了四個(gè)不同餐廳就餐的概率為
B.四人去了同一餐廳就餐的概率為
C.四人中恰有2人去了第一餐廳就餐的概率為
D.四人中去第一餐廳就餐的人數(shù)的期望為
【答案】ACD
【解析】
根據(jù)互斥事件的概率,分別求出選項(xiàng)對(duì)應(yīng)事件的概率,逐項(xiàng)驗(yàn)證;對(duì)于選項(xiàng),根據(jù)每個(gè)學(xué)生隨機(jī)選擇一家餐廳,則選擇去第一餐廳的概率為,所以去第一餐廳就餐的人數(shù)服從二項(xiàng)分布,即可求出期望,判斷選項(xiàng)正確.
四位同學(xué)隨機(jī)選擇一家餐廳就餐有選擇方法,
選項(xiàng),四人去了四個(gè)不同餐廳就餐的概率為,
所以選項(xiàng)正確;
選項(xiàng),四人去了同一餐廳就餐的概率為,
所以選項(xiàng)不正確;
選項(xiàng),四人中恰有2人去了第一餐廳就餐的概率為
,所以選項(xiàng)正確;
選項(xiàng),每個(gè)同學(xué)選擇去第一餐廳的概率為,
所以去第一餐廳就餐的人數(shù)服從二項(xiàng)分布,
,所以選項(xiàng)正確.
故選:ACD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,是的中點(diǎn),是與的交點(diǎn).將沿折起到的位置,如圖.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年起,部分省、市陸續(xù)實(shí)施了新高考,某省采用了“”的選科模式,即:考試除必考的語、數(shù)、外三科外,再從物理、化學(xué)、生物、歷史、地理、政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地區(qū)調(diào)查小組進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為.
(1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,試完成下面的列聯(lián)表:
選化學(xué) | 不選化學(xué) | 合計(jì)(人數(shù)) | |
選物理 | |||
不選物理 | |||
合計(jì)(人數(shù)) |
(2)根據(jù)第(1)問的數(shù)據(jù),能否有99%把握認(rèn)為選擇化學(xué)與選擇物理有關(guān)?
(3)若研究得到在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理又選化學(xué)的人數(shù)至少有多少?(單位:千人;精確到0.001)
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)有甲,乙,丙三位學(xué)生,他們前三次月考的物理成績?nèi)绫恚?/span>
第一次月考物理成績 | 第二次月考物理成績 | 第三次月考物理成績 | |
學(xué)生甲 | 80 | 85 | 90 |
學(xué)生乙 | 81 | 83 | 85 |
學(xué)生丙 | 90 | 86 | 82 |
則下列結(jié)論正確的是( 。
A. 甲,乙,丙第三次月考物理成績的平均數(shù)為86
B. 在這三次月考物理成績中,甲的成績平均分最高
C. 在這三次月考物理成績中,乙的成績最穩(wěn)定
D. 在這三次月考物理成績中,丙的成績方差最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。
A.120種B.240種C.144種D.288種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面,為的中點(diǎn),是棱的中點(diǎn),.
(1)證明:平面平面.
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”節(jié)的到來,某單位舉行“慶五一,展風(fēng)采”的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤“Enter”鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù)和,并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按“Enter”鍵,當(dāng)顯示出來的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).
(1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;
(2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com