10.給出定義在(0,+∞)上的兩個函數(shù)f(x)=x2-alnx,g(x)=x-a$\sqrt{x}$.
(1)若f(x)在x=1處取最值.求實數(shù)a的值;
(2)若函數(shù)h(x)=f(x)+g(x2)在區(qū)間(0,1]上單調(diào)遞減,求實數(shù)a的取值范圍;
(3)在(1)的條件下,試確定函數(shù)m(x)=f(x)-g(x)-6的零點個數(shù),并說明理由.

分析 (1)首先對f(x)求導(dǎo),根據(jù)f'(1)=0,即可求出a的值;
(2)函數(shù)h(x)=f(x)+g(x2)在區(qū)間(0,1]上單調(diào)遞減則h'(x)≤0,即4x-a(1+$\frac{1}{x}$)≤0在區(qū)間(0,1]上恒成立;
(3)根據(jù)m(x)的導(dǎo)函數(shù)零點判斷函數(shù)的單調(diào)性,再可取特征點判斷零點個數(shù).

解答 解:(1)f'(x)=2x-$\frac{a}{x}$   由已知,f'(1)=0 即:2-a=0,
解得:a=2,經(jīng)檢驗a=2滿足題意,
所以 a=2.
(2)h(x)=f(x)+g(x2)=x2-alnx+x2-ax=2x2-a(x+lnx);
 h'(x)=4x-a(1+$\frac{1}{x}$)  要使得h(x)=2x2-a(x+lnx)在區(qū)間(0,1]上單調(diào)遞減,
則h'(x)≤0,即4x-a(1+$\frac{1}{x}$)≤0在區(qū)間(0,1]上恒成立;
因為x∈(0,1],所以a≥$\frac{4{x}^{2}}{x+1}$;
設(shè)函數(shù)F(x)=$\frac{4{x}^{2}}{x+1}$,則   a≥F(x)max;
F(x)=$\frac{4{x}^{2}}{x+1}$=$\frac{4}{(\frac{1}{x})^{2}+\frac{1}{x}}$
因為x∈(0,1],所以$\frac{1}{x}$∈[1,+∞),所以${({{{({\frac{1}{x}})}^2}+\frac{1}{x}})_{min}}=2$;
所以F(x)max=2,所以a≥2.
(3)函數(shù)m(x)=f(x)-g(x)-6有兩個零點.因為m(x)=x2-2lnx-x+2$\sqrt{x}$-6;
所以  m'(x)=$2x-\frac{2}{x}-1+\frac{1}{\sqrt{x}}$=$\frac{(\sqrt{x}-1)(2x\sqrt{x}+2x+\sqrt{x}+2)}{x}$;
當(dāng)x∈(0,1)時,m'(x)<0,當(dāng)x∈(1,+∞)時,m'(x)>0;
所以m(x)min=m(1)=-4<0,
m(e-2)=$\frac{(1-e)(1+e+2{e}^{3})}{{e}^{4}}$<0,$m({e^{-4}})=\frac{{1+2{e^8}+{e^4}(2{e^2}-1)}}{e^8}>0$;
m(e4)=e4(e4-1)+2(e2-7)>0 故由零點存在定理可知:
函數(shù)m(x)在 (e-4,1)存在一個零點,函數(shù)m(x)在(1,e4) 存在一個零點,
所以函數(shù)m(x)=f(x)-g(x)-6有兩個零點.

點評 本題主要考查了導(dǎo)數(shù)的定義,函數(shù)的單調(diào)性與導(dǎo)函數(shù)的關(guān)系以及根據(jù)函數(shù)單調(diào)性判斷零點個數(shù),屬中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的人中至少有一個同學(xué)的成績在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:直線x-y+a=0與圓x2+y2-2x=1相交; 命題q:曲線y=ex-ax(e 為自然對數(shù)的底數(shù))在任意一點處的切線斜率均大于1.若命題p∧(¬q)是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-1}$是冪函數(shù),在(0,+∞)是增函數(shù),則實數(shù)m=( 。
A.-1B.2C.2或-1D.0或2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.經(jīng)過P(-1,2)且傾斜角為α的直線l與圓x2+y2=8的交點是A,B;
(1)當(dāng)α=$\frac{π}{4}$時,求弦AB的長度;
(2)求當(dāng)弦AB的長度最短時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+1.
(Ⅰ)在所給坐標系中畫出函數(shù)y=f(x)在一個周期內(nèi)的圖象;
(Ⅱ)求滿足f(x)≥$\sqrt{3}$+1的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,一個幾何體的正視圖和側(cè)視圖都是邊長為2的正方形,俯視圖是一個直徑為2的圓,則這個幾何體的全面積是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在直角坐標平面上有一系列點,p1(x1,y1),p2(x2,y2),…pn(xn,yn),…,對一切正整數(shù)n,點pn位于函數(shù)y=3x+$\frac{13}{4}$的圖象上,且pn的橫坐標構(gòu)成以-$\frac{5}{2}$為首項,-1為公差的等差數(shù)列{xn},則pn的坐標為$(-\frac{3+2n}{2},-\frac{5+12n}{4})$.

查看答案和解析>>

同步練習(xí)冊答案