17.已知f(x)=x2-1,g(x)=3x+1,則g[f(0)]=-2,f[g(x)]=9x2+6x.

分析 根據(jù)已知中f(x)=x2-1,g(x)=3x+1,代入可得答案.

解答 解:∵f(x)=x2-1,g(x)=3x+1,
∴g[f(0)]=g(-1)=-2,
f[g(x)]=(3x+1)2-1=9x2+6x,
故答案為:-2,9x2+6x

點評 本題考查的知識點是函數(shù)求值,代入法求函數(shù)的解析式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是公差為1的等差數(shù)列,a1,a5,a25成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=3${\;}^{{a}_{n}}$+an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,某炮兵陣地位于A點,兩觀察所分別位于C、D兩點,已知△ACD為正三角形,且DC=$\sqrt{3}$km,當(dāng)目標(biāo)出現(xiàn)在B時,測得∠CDB=45°,∠BCD=75°,求炮兵陣地與目標(biāo)的距離是多少?(精確到0.01km)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的三邊長分別為BC=a,AC=b,AB=c,I為△ABC的內(nèi)心,且I在△ABC的邊BC、AC、AB上的射影分別為D、E、F,求AE的長度以及△ABC內(nèi)切圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若實數(shù)x、y、z滿足x+y=6,z2=xy-9,求證:x=y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某企業(yè)宣傳部需要安排所有的員工分赴2個宣講會,每個地點至少分派1名經(jīng)理和4名普通員工,已知宣傳部有2名經(jīng)理和9名普通員工,則不同的安排共有 ( 。┓N.
A.504B.600C.720D.1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知M⊆{1,2,3,4,5},若M中所有元素之和稱為M的“容量”(規(guī)定空集容量為0),若M的容量為奇(偶)數(shù),則稱M為奇(偶)子集.求證:
(1)M的奇子集與偶子集個數(shù)相等:
(2)奇子集與偶子集容量相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線y=k(x-m)與拋物線y2=2px(p>0)交于A、B兩點,O為坐標(biāo)原點,OA⊥OB,OD⊥AB于D,點D在曲線x2+y2-4x=0上,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l1:3x+4y+4=0和直線l2:$y=-\frac{1}{4}$,拋物線x2=y上一動點P到直線l1和直線l2的距離之和的最小值是( 。
A.1B.2C.$\frac{11}{5}$D.3

查看答案和解析>>

同步練習(xí)冊答案