分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,能求出曲線C1的直角坐標(biāo)方程.
(Ⅱ)設(shè)Q(cosθ,sinθ),(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),由題意知直線C的斜率k=$\sqrt{3}$,從而$\frac{sinθ}{cosθ}$=tanθ=-$\frac{\sqrt{3}}{3}$,進(jìn)而Q($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).設(shè)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2.把$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+\frac{1}{2}t}\\{y=-\frac{1}{2}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,代入y2=4x,得3t2-(8+2$\sqrt{3}$)t-8$\sqrt{3}+1$=0,由此利用韋達(dá)定理能求出|AQ|-|BQ|.
解答 解:(Ⅰ)∵x=ρcosθ,y=ρsinθ,
由ρsin2θ=4cosθ,得ρ2sin2θ=4ρcosθ,
∴曲線C1的直角坐標(biāo)方程為:y2=4x.
(Ⅱ)設(shè)Q(cosθ,sinθ),(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),由題意知直線C的斜率k=$\sqrt{3}$,
所以${k}_{OQ}=-\frac{\sqrt{3}}{3}$,即$\frac{sinθ}{cosθ}$=tanθ=-$\frac{\sqrt{3}}{3}$,
所以$θ=-\frac{π}{6}$,故Q($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).
取${x}_{0}=\frac{\sqrt{3}}{2}$,${y}_{0}=-\frac{1}{2}$,不妨設(shè)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2.
把$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+\frac{1}{2}t}\\{y=-\frac{1}{2}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,代入y2=4x,
化簡(jiǎn)得$\frac{3{t}^{2}}{4}=4(2+\frac{t}{2})$,即3t2-(8+2$\sqrt{3}$)t-8$\sqrt{3}+1$=0,
∵C與C1相交于A,B,∴△>0,t1+t2=$\frac{8+2\sqrt{3}}{3}$.
∴|AQ|-|BQ|=|t1+t2|=$\frac{8+2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查曲線的直角坐標(biāo)的求法,考查兩線段之差的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{100π}{3}$ | B. | 64π | C. | 100π | D. | $\frac{500π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com