..(滿分12分)

已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn) 均在函數(shù)的圖像上。

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),是數(shù)列的前項(xiàng)和,求使得對所有都成立的最小正整數(shù)。

 

【答案】

 

解:1)由題可設(shè),則,由

    ,所以…………2分

    又由點(diǎn)均在函數(shù)的圖像上,得…………3分

    當(dāng)時(shí),…………5分

    當(dāng)時(shí),

    所以………………6分

    2)由1)得…………8分

    …………10分

    因此使得成立的僅需且必須滿足,即

    故滿足要求的最小正整數(shù)為10!12分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),其中為常數(shù).

(1)當(dāng)時(shí),恒成立,求的取值范圍;(2)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

在一次籃球練習(xí)課中,規(guī)定每人最多投籃5次,若投中2次就稱為“通過”,若投中3次就稱為“優(yōu)秀”并停止投籃.已知甲每次投籃投中的概率是

(I)求甲恰好投籃3次就通過的概率;

(II)設(shè)甲投籃投中的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望E

查看答案和解析>>

同步練習(xí)冊答案