已知變量x、y滿足線性約束條件
2x-y≤2
x-y≥-1
x+y≥1
,則目標(biāo)函數(shù)z=
1
2
x-y最大值為______.
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
∵z=
1
2
x-y,
∴y=
1
2
x-z,平移直線y=
1
2
x-z,
由圖象可知當(dāng)直線y=
1
2
x-z經(jīng)過點(diǎn)C(1,0)時,直線y=
1
2
x-z的截距最小,此時z最大,z=
1
2
×1-0=
1
2

故答案為:
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xoy中,設(shè)D表示的區(qū)域中的點(diǎn)橫坐標(biāo)x和縱坐標(biāo)y滿足條件
x-y+1≥0
x+y-1≤0
y≥0
,E是到原點(diǎn)的距離不大于1的點(diǎn)構(gòu)成的區(qū)域,向E中隨機(jī)投一點(diǎn),則所投點(diǎn)在D中的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系內(nèi),滿足不等式x2-y2≤0的點(diǎn)(x,y)的集合(用陰影表示)是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩人約定在10點(diǎn)半到12點(diǎn)會面商談事情,約定先到者應(yīng)等候另一個人20分鐘,即可離去,求兩人能會面的概率______(結(jié)果用最簡分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(2,t)在不等式組
x-y-4≤0
x+y-3≤0
表示的平面區(qū)域內(nèi),則點(diǎn)P(2,t)到直線3x+4y+10=0距離的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x、y滿足
x≥0
y≥0
x+y≤1
,則
x+y
x-2
的取值范圍是( 。
A.[0,1]B.[-1,0]C.(-∞,+∞)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出平面區(qū)域如圖所示,其中A(5,3),B(1,1),C(1,5),若使目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個,則a的值為( 。
A.
2
3
B.
1
2
C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量x,y滿足約束條件
y≤x
x+y≥2
y≤3x-6
,則目標(biāo)函數(shù)Z=2x+y的最小值為( 。
A.2B.4C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知D是由不等式組所確定的平面區(qū)域,則圓在區(qū)域D內(nèi)的弧長為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案